

Recent highlights from the STAR Experiment

Rutik Manikandhan (University of Houston) *for the STAR Collaboration*

- ❖ **Introduction**
- ❖ **STAR Experiment**
- ❖ **Results:**
	- ➢ **Proton Multiplicity Fluctuations**
	- ➢ **Transverse Momentum Correlations**
- ❖ **Summary**

Introduction

- ❖ Two distinct phases of matter confirmed
- ❖ Crossover at low $\mu_{\rm B}$ ($\mu_{\rm B}/T$ < 2)
- \bullet Predictions of 1st order phase transition at high $\mu_{\rm B}$
- ❖ RHIC collider energies cover up to 420 (MeV) $\mu_{\rm B}$
- ❖ RHIC FXT extends coverage up to 750 (MeV) $\mu_{\rm B}$
- ❖ CBM experiment at FAIR extends coverage even further

B. Mohanty, N. Xu, arXiv:2101.09210

STAR Experiment

- ❖ STAR: Solenoidal Tracker At RHIC.
- ❖ Heavy ion collisions of Au,Cu,Zr,Ru etc ...
- ❖ Energy range from 3 GeV 200 GeV (\sqrt{s}_{NN}) .
- ❖ BES-II, detector upgraded, high statistics data recorded.
- ❖ Experiment has Collider and Fixed-Target modes.

- ❖ Located at Brookhaven National Laboratory (BNL).
- ❖ Long Island, New York, USA.

STAR Detector

Results: Proton Multiplicity Fluctuations

Proton Multiplicity Cumulants

Cumulants: n = net-proton multiplicity in an event $C_1 =$ $\delta n = n - \langle n \rangle$ $C_2=<\delta n^2>$ $C_3=<\delta n^3>$ $C_4 = <\delta n^4 > -3 < \delta n^2 >$ **Factorial Cumulants:** $\kappa_1 = C_1$ $\kappa_2 = -C_1 + C_2$ $\kappa_3 = 2C_1 - 3C_2 + C_3$ $\kappa_4 = -6C_1 + 11C_2 - 6C_3 + C_4$

Rutik Manikandhan, FAIRNess 2024, Croatia

Cumulants quantify characteristics of distributions: **Skewness:** C3 /C2

Cumulants for CP Search

Cumulants are related to the correlation length

$$
C_2 \sim \zeta^2
$$

$$
C_4\sim \zeta^7
$$

Cumulants ratios are related to ratios of susceptibilities 2

$$
\frac{C_{4q}}{C_{2q}} = \frac{\chi_4^q}{\chi_2^q}
$$

Non-monotonic dependence on collision energy (\sqrt{s}) predicted to be a signature of critical behaviour

M. A. Stephanov, PRL 107 (2011) 052301

BES-I Measurement of Kurtosis

- Observed hint of non-monotonous trend in BES-I (3σ)
- Robust conclusion requires confirmation from precision measurement from BES-II.
- Extend reach to even lower collision energies with FXT energies

STAR : PRL 127, 262301 (2021), PRC 104, 24902 (2021) ,PRL 128, 202302 (2022), PRC 107, 24908 (2023) HADES: PRC 102, 024914 (2020)

BES-II Scan of Proton Cumulants

Net-proton Distributions:

- Raw net-proton distributions from BES-II (Collider): Uncorrected for detector efficiency.
- Mean increases with decreasing collision energy (baryon stopping).
- Larger width leads to larger Stat. uncertainties.

BES-II Vs BES-I

❖ Two different centrality classes shown

BES-II Vs BES-I

- ❖ Two different centrality classes shown
- BES-II:

❖ Here on only BES-II results are discussed.

Rutik Manikandhan, FAIRNess 2024, Croatia

1. Smooth variation vs \sqrt{s}_{NN} in C_2/C_1 and $\mathrm{C}_3/\mathrm{C}_2$ observed.

Rutik Manikandhan, FAIRNess 2024, Croatia

AR.

- 1. Smooth variation vs \sqrt{s}_{NN} in C_2/C_1 and $\text{C}_3\text{/C}_2$ observed.
- 2. Non-CP models used for comparison:

Hydro :Hydrodynamical model

- 1. Smooth variation vs \sqrt{s}_{NN} in C_2/C_1 and $\text{C}_3\text{/C}_2$ observed.
- 2. Non-CP models used for comparison: Hydro :Hydrodynamical model

HRG CE: Thermal model with canonical treatment of baryon charge

- 1. Smooth variation vs \sqrt{s}_{NN} in C_2/C_1 and $\text{C}_3\text{/C}_2$ observed.
- 2. Non-CP models used for comparison: Hydro :Hydrodynamical model

HRG CE: Thermal model with canonical treatment of baryon charge

UrQMD: Hadronic transport model

- 1. Smooth variation vs \sqrt{s}_{NN} in C_2/C_1 and $\text{C}_3\text{/C}_2$ observed.
- 2. Non-CP models used for comparison: Hydro :Hydrodynamical model

HRG CE: Thermal model with canonical treatment of baryon charge

UrQMD: Hadronic transport model

3. Qualitative trend described by model except for C_4/C_2 . Quantitative differences exist b/w data and non-CP model.

> **Rutik Manikandhan, FAIRNess 2024, Croatia** HRG CE: P. B Munzinger et al, NPA 1008, 122141 (2021) Hydro: V. Vovchenko et al, PRC 105, 014904 (2022) UrQMD: M. Bleicher et al. J.Phys.G25:1859-1896,(1999)

Conclusions

 $\textsf{C}_4/\textsf{C}_2$ shows minimum around ~20 GeV comparing to non-CP models, 70-80% data

1. Maximum deviation: 3.2 -4.7 σ at $\sqrt{s_{NN}}$ = 19.6 GeV (1.3 - 2.0 σ for BES-I)

Factorial Cumulants

- 1. Factorial cumulants for protons and antiprotons.
- 2. Proton factorial cumulant ratios deviates from poisson baseline at 0.
- 3. Antiproton κ_3/κ_1 , κ_4/κ_1 closer to 0.

HRG CE: P. B Munzinger et al, NPA 1008, 122141 (2021) Hydro: V. Vovchenko et al, PRC 105, 014904 (2022) UrQMD: M. Bleicher et al. J.Phys.G25:1859-1896,(1999)

BES-II data Vs Theory

- ❖ Density plot of the quartic cumulant of the order parameter obtained by mapping of the Ising equation of state onto the QCD equation of state near the critical point.
- \bullet The freeze out point moves along the dashed yellow line as $\sqrt{s_{NN}}$ is varied during the beam energy scan.
- ❖ Susceptibilities extracted from universal EOS

(universal EOS) critical χ_n : $n=2$ **Freezeout line** $n=3$ **Critical Point** $n=4$ **T** $\boldsymbol{\mu}$ $\mu_{\rm max} < \mu_{\rm CP}$

A.Bzdak et. al. Phys.Rept. 853 (2020)

BES-II data Vs Theory

- ❖ Density plot of the quartic cumulant of the order parameter obtained by mapping of the Ising equation of state onto the QCD equation of state near the critical point.
- ❖ The freeze out point moves along the dashed yellow line as \sqrt{s}_{NN} is varied during the beam energy scan.
- ❖ Susceptibilities extracted from universal EOS
- ❖ Susceptibilities along the freezeout line.

BES-II data Vs Theory

- ❖ Susceptibilities along the freezeout line.
- \triangleleft Expected signatures: bump in ω , and $\boldsymbol{\omega}_\mathfrak{s}$, dip then bump in $\boldsymbol{\omega}_\mathfrak{q}$ for CP at $\mu_{\textrm{B}}$ > 420 MeV

Conclusion

- ❖ Subtract the baseline
- ❖ Qualitatively agrees with non-monotonic expectations from CP, not only in $n = 4$ factorial cumulant, but $n = 3$ and $n = 2$.
- \triangle To produce such signatures the CP has to be at μ B > 420 MeV. Agreement with recent theory estimates by different approaches.

Results: Transverse Momentum Correlations

Transverse Momentum Correlations

- \triangleleft High-energy kinematics and Quantum Chromodynamics (QCD) generate correlations between the first partons produced at the onset of a nuclear collision [1].
- ❖ Transverse momentum correlators have been proposed as a measure of these correlations and as a probe for the critical point of quantum chromodynamics [2].

$$
\left| C_m = <\Delta p_{t,i}, \Delta p_{t,j}> \right|
$$

$$
< (p_{t,i} -)(p_{t,j}-)>
$$

[1]: S. Gavin. Physical Review Letters, 92(16)

[2]: ALICE, Phys. Part. Nuclei 51,2020

Correlator Contributions

- ❖ Correlators have contributions from dynamic correlations from the first partons produced.
- ❖ These correlations get erased by scattering and thermalization.
- \bullet The rapid expansion and short lifetime of the system fight the forces of isotropization, preventing certain correlations from being completely thermalized.
- ❖ To understand early correlations, study rapidity dependence!

Correlator Contributions

- ❖ Correlators have contributions from dynamic correlations from the initial partons produced.
- ❖ These correlations get erased by scattering and thermalization.
- \bullet The rapid expansion and short lifetime of the system fight the forces of isotropization, preventing certain correlations from being completely thermalized.
- ❖ Determined by particle production mechanisms.
- ❖ Determined by thermalization and equilibrium fluctuations.

$$
= \widehat{\braket{p_T>_{\rm o}}S + \bigcirceq p_T>} (1-S)
$$

 $S \propto e^{-N}$

(Collision probability)

$$
<\delta p_T\delta p_T>=\overbrace{ \delta p_T\delta p_T }^{<}\overline{\delta p_T\delta p_T>} _e \overline{(1-S)^2}
$$

S. Gavin, Phys. Rev. Lett. 92, 162301

Correlator Contributions

- ❖ Transverse momentum fluctuations have contributions from multiplicity fluctuations as well
	- R is the robust variance and depends on N_{part}
	- \triangleright Measures deviation from Poissonian statistics
	- \triangleright Robust quantity (independent of detector efficiency)
	- ➢ Roughly constant for a given centrality class.

Zuantified $\frac{<\!N(N-1)>-<\!N>^2}{<\!N\!>^2}$

> **C. Pruneau et. al. Phys.Rev.C 66 (2002) 044904**

Correlator Baseline Expectations

Approximation

 $<\Delta p_{t,i},\Delta p_{t,j}>=F\frac{ R}{1+R}$

- \bullet **F**(ζ_{τ}) function of ratio of the correlation length ($\zeta_{\text{\tiny T}}$) to the transverse size.
- ❖ Assumptions:
	- \triangleright Central collisions are locally thermalized
	- \triangleright Ratio of correlation length $(\zeta_{\sf T})$ to the transverse size remains constant.

S. Gavin, Phys. Rev. Lett. 92, 162301

Rutik Manikandhan, FAIRNess 2024, Croatia ➢ R is constant

 $\overline{<\!\Delta p_{t,i},\!\Delta p_{t,j}\!\!>} \ \hphantom{=} <\!\!\!\! \displaystyle \frac{}{<\!p_t\!>}$ $\big(\frac{F(\zeta_T)R}{1+R}\big)^{1/2}$ **CONST of Collision Energy (BASELINE)**

- ❖ The correlation observable may have a dependence on energy, so we scale it with <<p_T>>.
- ❖ Efficiency independent observable.
- \triangleleft Make a direct comparison with the CERES and ALICE.
- ❖ No dependence on collision energy observed. **(CONST!)**

STAR, Phys.Rev.C72:044902,2005 ALICE, Eur. Phys. J. C 74, 2014 CERES, Nucl.Phys.A811:179-196,2008

- ❖ Boltzmann-Langevin implies thermalized systems.
- ❖ UrQMD deviates from data consistently at all energies.
- ❖ A significant beam energy dependence was found for $\bm{{\mathsf{p}}}_\textsf{T}$ correlations.

STAR, Phys.Rev.C 99, 2019 CERES, Nucl.Phys.A811:179-196,2008 ALICE, Eur. Phys. J. C 74, 2014

- ❖ We see a departure from monotonicity
- ❖ Change in correlation length $\zeta_{\textsf{T}}$?
- \triangleleft p_T fluctuations has contributions from temperature and multiplicity fluctuations.

Sumit Basu et. al., Phys.Rev.C 94, 2016

S. Gavin, Phys. Rev. Lett. 92, 162301

- \triangleleft F(ζ_T) and R to be constant as a function of collision energy.
- \bullet F(ζ_T) = 0.046
- \triangleleft R = 0.0037 (Central Au+Au at 200 GeV)

S. Gavin, Phys. Rev. Lett. 92, 162301

$$
\big(\frac{F(\zeta_T)R}{1\!+\!R}\big)^{1/2} = \textsf{Constant}(-\,\texttt{-}\,\texttt{-})
$$
 baseline

Rutik Manikandhan, FAIRNess 2024, Croatia

 $\bigg\{\langle\,\Delta\,\mathsf{p}_{\scriptscriptstyle \mathrm{t};\mathsf{1}}\,\Delta\,\mathsf{p}_{\scriptscriptstyle \mathrm{t};\mathsf{1}}\,\rangle\mathcal{H}\langle\,\mathsf{p}_{\scriptscriptstyle \mathrm{T}}\,\rangle\,\rangle\,\gamma_0$

Conclusions

- \triangle First measurement of $\Delta p_T \Delta p_T$ correlators at high baryon density region
	- \triangleright Δp_{T} - Δp_{T} show a non-monotonic behaviour.
	- \triangleright Possibility of correlation length changing in between ?
- ❖ We need to delve deeper into the disparity observed between UrQMD and experimental data at Fixed-Target (FXT) energies. **³⁴**

Summary

- **1. Precision measurement of net-proton number fluctuations in Au+Au collisions from STAR BES-II reported. Centrality and energy dependence discussed.**
- 2. Measured net-proton C_4/C_2 in 0-5% central collisions shows clear deviation at $\sqrt{s_{NN}}$ = 19.6 GeV **for all non-CP model calculations with a significance level of 3.2 − 4.7σ**
- **3. Factorial Cumulants are qualitatively described by CP signatures.**
- **4.** First measurement of $\Delta p_{\rm T}$ - $\Delta p_{\rm T}$ correlators at high **baryon density region.**
- **5.** $\Delta p_{\text{T}}\Delta p_{\text{T}}$ show a non-monotonic behaviour in 0-5% **central collisions a function of collision energy.**

References

- **1. Temperature Fluctuations in Multiparticle Production Phys. Rev. Lett. 75, 1044**
- **2. Incident energy dependence of pt correlations at relativistic energies Phys.Rev.C72:044902,2005**
- 3. Event-by-event fluctuations in mean p_T and mean e_T in s(NN)**(1/2) = 130-GeV Au+Au collisions Phys.Rev.C 66 **(2002) 024901**
- 4. Collision-energy dependence of p_T correlations in Au + Au collisions at energies available at the BNL Relativistic **Heavy Ion Collider - Phys.Rev.C 99 (2019) 4, 044918**
- 5. Event-by-event mean $\bm{{\mathsf{p}}}_{{\mathsf{T}}}$ fluctuations in ${\mathsf{pp}}$ and Pb-Pb collisions at the LHC Eur. Phys. J. C 74 (2014) 3077
- **6. Specific Heat of Matter Formed in Relativistic Nuclear Collisions Phys.Rev.C 94 (2016) 4, 044901**
- **7. [Baryon Stopping and Associated Production of Mesons in Au+Au Collisions at](https://www.actaphys.uj.edu.pl/S/16/1-A49/pdf) s(NN)**(1/2)[=3.0 GeV at STAR](https://www.actaphys.uj.edu.pl/S/16/1-A49/pdf) Acta Phys. Pol. B Proc. Suppl. 16, 1-A49 (2023)**
- 8. Traces of Thermalization from p_T Fluctuations in Nuclear Collisions S. Gavin, Phys. Rev. Lett. 92, 162301 (2004)

BACKUP $\frac{1}{2}$

Correlator Vs Acceptance

- ❖ Long range rapidity correlations imply early correlations [1].
- ❖ Early correlations from hadronic or partonic interactions?
- ❖ Delve deeper into source for early correlations.

***Δ : Acceptance window around mid-rapidity**

38

Facility for Anti-proton and Ion Research

- \bullet Good low p_T coverage
- ❖ Mid-rapidity coverage

- ❖ Interaction rates upto 10 MHz
- ❖ Optimal for CP searches!

Rutik Manikandhan, FAIRNess 2024, Croatia

BES-II Scan of Proton Cumulants

Centrality Definition:

- Defined using charged particle multiplicity measured by STAR
- Exclude protons and antiprotons to avoid self correlation
- **Refmult3:** Charged particle multiplicity excluding protons measured within $|η|$ < 1.0
- **Refmult3X:** Charged particle multiplicity excluding protons measured within |η| < 1.6

RHIC Beam Energy Scan

- ❖ BES-II collider program at the Relativistic Heavy-Ion Collider scans phase space of QCD matter by colliding gold ions at varying energies.
- ❖ Seeking to map onset of deconfinement, and the predicted QCD critical point.
- ❖ The BES-II collider program provided the energies $\sqrt{s_{NN}}$ >=7.7 GeV and the BES-II FXT program provided the ones below, down to $\sqrt{s_{\text{NN}}}$ = 3.0 GeV.

Centrality resolution dependence on C4/C2

- 1. 0-5% centrality results show good agreement between Refmult3 and Refmult3X
- 2. Weak effect of centrality resolution on $\mathrm{C}_4/\mathrm{C}_2^{}$ for central collisions.
- 3. BES-II results shown hereafter are with Refmult3X

Closure Test

- **❖** The relative uncertainties $\sqrt{C_m}/\sqrt{9T}$ >> on are generally smaller than those on C_{m} because most of the sources of uncertainties lead to correlated variations of <<p $_{\rm T}$ >> and ${\sf C}_{_{\rm m}}$ that tend to cancel in the ratio.
- ❖ Closure test was performed with UrQMD data, by incorporating 3.0 GeV efficiency curves.
- ❖ We see closure within the statistical error bars.
- ❖ No efficiency correction was employed on STAR Data.

Correlator Vs Centrality

- ❖ Monotonic increase in decreasing centrality.
- ❖ UrQMD underpredicts the data at both energies.
- ❖ Power law able to describe these energies, need to delve deeper into centrality bin width dependence.

Partial Thermalization

- ❖ Scattering among these partons leads to dissipation that works to erase these correlations, making the system as thermal and locally isotropic as possible.
- ❖ The rapid expansion and short lifetime of the system fight the forces of isotropization, preventing certain correlations from being completely thermalized.

FIG. 1. (color online) Transverse momentum fluctuations as a function of the charged-particle rapidity density dN/dy for partial thermalization (solid curves) and local equilibrium flow (dashed curves). Data (circles, squares, and triangles) **Rutik Manikan** are from Refs. [27], [31], and [32, 33], respectively.

Correlator Vs Centrality

- ❖ Power law implies uncorrelated sources (b=-0.5).
- ❖ STAR data from 200 GeV Au+Au collision shows minimal deviation.
- \clubsuit Deviation increases as we go down the collision energy
- ❖ Deviation holds at STAR 3.0 GeV and 3.2 GeV Au+Au collisions as well.

\Box UrQMD \bullet Most sources of p_T fluctuations are stochastic, encompassing fluctuations

in nucleon and parton positions within the initial state [1].

UrQMD tends to underpredict the data at all energies.

Correlator Vs Centrality

Rutik Manikandhan, FAIRNess 2024, Croatia

I Statistical error Systematic error

 27 GeV

14.5 GeV

11.5 GeV

19.6 GeV

47

UrQMD with asymmetric Acceptance

- ❖ To verify the UrQMD calculations, the analysis was carried out at a published energy.
- ❖ The analysis was also done with an asymmetric acceptance of η : [0,1]

Auto Correlation Studies

https://groups.nscl.msu.edu/nscl_library/Thesis/Novak,%20John.pdf

 $T_{\sf chem}$ Vs $\;\boldsymbol{\mu}_{\sf B}$

Contributions to temperature fluctuations

⁵¹ **Phys.Rev.C 106 (2022) 1, 014910**