

Identified particle v₁ and v₂ in 3 GeV Au+Au collisions at STAR

Sooraj Radhakrishnan (for the STAR Collaboration) Kent State University/Lawrence Berkeley National Laboratory

BERKELEY LAB Bringing Science Solutions to the World

Exploring QCD matter

- Quark Gluon Plasma
 - Partonic degrees of freedom
- Where are we in low energy collisions?
 - Hadronic matter?
 - What is the EoS of nuclear matter?
- 'Collective flow' ideal tool to study nature and properties of the medium produced

Collective flow in heavy-ion collisions

Collective flow in heavy-ion collisions

- Low energies:
 - Contribution from spectator shadowing
 - Out of plane v₂ from squeeze out

Science 298, 1592-1596

Sooraj Radhakrishnan (for STAR Collaboration)

- Baryonic mean-field potentials also important in generating v_1 , v_2
- Information on EoS, incompressibility (K) of nuclear matter

 $\sqrt{s_{NN}} = 3 \text{ GeV}$

FXT Collisions at 3 GeV at STAR

• FXT program extends the STAR Beam Energy Scan-II to lower collision energies (7.7 - 3 GeV) and higher μ_B (420 - 720) MeV) regions

STAR in FXT mode

Sooraj Radhakrishnan (for STAR Collaboration)

Beam Energy	$\sqrt{s_{\rm NN}}$	$\mu_{ m B}$	Run Time	Number Events	D
(GeV/nucleon)	(GeV)	(MeV)		Requested (Recorded)	Col
31.2	7.7 (FXT)	420	$0.5{+}1.1 \mathrm{~days}$	100 M (50 M+112 M)	Run-
19.5	6.2 (FXT)	487	$1.4 \mathrm{~days}$	100 M (118 M)	Ru
13.5	5.2 (FXT)	541	$1.0 \mathrm{day}$	100 M (103 M)	Ru
9.8	4.5 (FXT)	589	$0.9 \mathrm{~days}$	100 M (108 M)	Ru
7.3	3.9 (FXT)	633	$1.1 \mathrm{~days}$	100 M (117 M)	Ru
5.75	3.5 (FXT)	666	$0.9 \mathrm{~days}$	100 M (116 M)	Ru
4.59	3.2 (FXT)	699	$2.0 \mathrm{~days}$	100 M (200 M)	Ru
3.85	3.0 (FXT)	721	4.6 days	100 M (259 M)	Ru

- STAR FXT Au+Au run at 3 GeV in 2018
- High statistics (~250 million events), mid-rapidity acceptance
- Enables differential study of identified hadron v_1 , v_2

STAR

Particle acceptance

- Efficiency uncorrected transverse momentum (p_T) and rapidity coverage for different particles
- Acceptance extending from mid-rapidity to target rapidity for all particles studied (π, K, K_s, p, Λ)

Identified hadron v₁ and v₂ at FXT 3 GeV

- Positive v₁ slope and negative v₂ for all particles in central collisions
- UrQMD cascade mode cannot describe data
- Need baryonic mean field interactions to generate trends seen in data

Models: Prog. Part. Nucl. Phys. 41, 225-370 J. Phys. G: Nucl. Part. Phys. 25, 1859-1896 Eur. Phys. J. A1 15, 1-16

Identified hadron v₁ vs p_T

- dv_1/dy increases with p_T for all particles
- UrQMD cascade mode cannot describe data
- Need baryonic mean field interactions to generate trends seen in data

Sooraj Radhakrishnan (for STAR Collaboration)

Models: Prog. Part. Nucl. Phys. 41, 225-370 J. Phys. G: Nucl. Part. Phys. 25, 1859-1896 Eur. Phys. J. A1 15, 1-16

Identified hadron v_2 vs p_T : Disappearance of quark number scaling

Measurements from new data at 27 and 54.4 GeV

Sooraj Radhakrishnan (for STAR Collaboration)

NCQ scaling holds for energies from 200 down to 4.5 GeV collisions

Partonic collectivity

v₂ values are negative and NCQ scaling breaks down at 3 GeV indicative of medium without partonic degrees of freedom

STAR: Phys. Rev. C88149020 STAR: Phys. Rev. C.103, 034908 X. Dong et al. Phys. Lett. B 597 328-332

Energy dependence of v₁ and v₂

- Positive v_1 slope and negative v_2 for all measured particles in 3 GeV collisions
- Positive v₁ slope observed for kaons and phi mesons for the first time
- Results from UrQMD with baryonic mean-field interactions qualitatively describe the data

Sooraj Radhakrishnan (for STAR Collaboration)

• Negative v_1 slope and large positive v_2 at high energy collisions

EoS dominated by baryonic interactions at 3 GeV

Models: Prog. Part. Nucl. Phys. 41, 225-370 J. Phys. G: Nucl. Part. Phys. 25, 1859-1896 Eur. Phys. J. A1 15, 1-16

- Flow measurements at high energies:
 - Positive v₂ values, quark number scaling
 - Partonic collectivity
- Flow measurements at 3 GeV:
 - Positive dv_1/dy and negative v_2
 - Break down of quark number scaling
 - Need baryonic mean-field potential to reproduce trends seen in data
- Different medium properties and EoS dominated by baryonic mean-field interactions for matter created in 3 GeV collisions

Sooraj Radhakrishnan (for STAR Collaboration)

Summary

Back Up

Identified hadron v₁ and v₂ at FXT 3 GeV: Rapidity dependence

