Recent results from the RHIC Longitudinal Spin program

Renee Fatemi 10-24-2012

How do quarks and gluons combine to form the well known proton spin?

$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_{Q} + L_{G}$

S_G Gluon spin

- Quark orbital angular momentum
- L_G Gluon orbital angular momentum

Proton Spin Structure

For Dirac particles g = 2. In 1933 Frisch and Stern measured g = 5.59 for the proton. *CLEAR INDICATION OF SUBSTRUCTURE!* The Constituent Quark Model reproduces the mass and magnetic moments of baryons fairly well so INDICATES PRIMARILY VALENCE U + D CONTRIBUTION?

After 20 Years...

After 20 Years...

"Sans-RHIC" $\Delta g(x)$

Neither the sign or the magnitude of ∆G are well constrained by DIS + SIDIS Data!

"Sans-RHIC" $\Delta u(x) \& \Delta d(x)$

• More constrained than $\Delta g...$ but much less than $\Delta u/\Delta d$.

• Current extractions from SIDIS data rely on FF measurements.

• Measurements lend insight into mechanism behind generation of light sea.

"Sans-RHIC" $\Delta u(x) & \Delta d(x)$

- More constrained than $\Delta g...$ but much less than $\Delta u/\Delta d$.
- Current extractions from SIDIS data rely on FF measurements.
- Measurements lend insight into mechanism behind generation of light sea.

Relativistic Heavy Ion Collider

...worlds 1st and only $\vec{p}\vec{p}$ Collider!

STAR Detector		PHENIX Detector	
		PbSc PC2 Central PC3 PbSc PbSc PbSc PbSc PbSc PbSc PbSc PbSc	
TIME PROJECTION CHAMBER	CHARGED PARTIC	LETRACKING	DRIFT + PAD CHAMBERS
TPC + TOF	CHARGED PARTICLE IDENTIFICATION		RICH +TOF
EM CALORIMETER 5520 (PbSc) towers	EM PARTICLE DETECTION HIGH PT TRIGGERING		EM CALORIMETER 15552 (PbSc) towers 9216 (PbGl) towers
BEAM BEAM COUNTERS ZERO DEGREE COUNTERS	RELATIVE LUMINOSITY MINIMUM BIAS TRIGGERING		BEAM BEAM COUNTERS ZERO DEGREE COUNTERS
LARGE ACCEPTANCE (-1<η<2)	STRENGTHS		HIGH RESOLUTION HIGH RATE READOUT

$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \frac{\Delta G}{\nabla G} + L_Q + L_G$

How to access $\triangle G$ at a pp collider?

Double Spin Asymmetries of jets and pions are ideal!

$$A_{LL} = \frac{\sigma^{++} - \sigma^{+-}}{\sigma^{++} + \sigma^{+-}} = \sum_{f_A f_B f_C} \frac{\Delta f_A \Delta f_B \times \Delta \sigma_{AB \to CX} \times D_C}{f_A f_B \times \sigma_{AB \to CX} \times D_C}$$

STAR 2005 & 2006 Inclusive Jet A_{LL}

PHENIX 2005+2006 midrapidity $\pi^0 A_{LL}$

Global Analysis of World Data – including 2005+2006 RHIC results!

DeFlorian, Sassot, Stratmann and Vogelsang, Phys.Rev.Lett. 101:072001, 2008

2009 STAR inclusive jet A_{LL}

- Increased statistical power due to sampling 25 pb⁻¹ of data combined with improvements in triggering and data collection rate.
- Forward jets sample larger fraction of quark-gluon sub-process
- Forward jets have larger $|\cos(\theta^*)|$, which reduces partonic a_{LL}

A_{LL} falls between the predictions of DSSV and GRSV-STD!!

Are PHENIX and STAR data consistent?

What is Run 9 Impact on ΔG ?

Preliminary DSSV++ curves provided by de Florian, Sassot, Stratmann & Vogelsang!

How does this ADD UP?

...Integration over full x range

This preliminary DSSV++ plot brought to you by de Florian, Sassot, Stratmann & Vogelsang!

How does this ADD UP?

At $Q^2 = 10 \text{ GeV}$ DSSV $\Delta \Sigma = 0.242$ DSSV++ $\Delta G \rightarrow 0.3?$ $1/2 \Delta \Sigma + \Delta G \sim 0.421 !$

This sum is INTRIGUING but ... ERROR BARS for $\Delta g(x)$ are VERY LARGE at low X!

Historically same trend with $\Delta \Sigma$!

EMC 1989: $\Delta\Sigma(Q^2 = 10.7 GeV) = 0.12 \pm 0.094 \pm 0.138$ DSSV 2x bigger than EMC $\Delta\Sigma$ - but still CONSISTENT!

Path Forward I: Functional Form

Correlation Measurements provide access to partonic kinematics.

- Di-jet A_{LL}
- Di-pion A_{LL}
- Photon-jet A_{LL}

$$x_{I(2)} = \frac{1}{\sqrt{s}} \left(p_{T3} e^{+(-)\eta_3} + p_{T4} e^{+(-)\eta_4} \right)$$
$$|\cos\vartheta^*| = \tanh\frac{|\eta_3 - \eta_4|}{2}$$

2009 STAR Dijet ALL

Dijets in the Forward Region Photon-jet Reconstruction

- Seema Damija

Inclusive pions in EEMC - Steve Gliske

- Brian Page

- Session FG

- Session HG

- Session FG

2009 PHENIX Di-pion A_{LL}

Opens door for π^0 -h+/- and π^0 -jet

First Correlation Spin Measurement at PHENIX

Path Forward II: Push to lower X

 $-\sqrt{s}=500 \text{ GeV}$ Inclusive + Dijet A_{LL}

- Push Dijets forward into EEMC

Dijets at √s=500 GeV -Grant Webb -Session HG

Path Forward II: Low X Error Reduction

Electromagnetic clusters in the forward PHENIX Muon Piston Chamber should push x coverage down to 0.002!

$\Delta \Sigma = \Delta U + \Delta \overline{U} + \Delta d + \Delta d + \Delta s + \Delta \overline{s}$

Probing the Sea Through W Production

Measure parityviolating singlespin asymmetry of detected leptons:

$$A_L = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-}$$

$$A_L^{W^-} \propto \frac{-\Delta d(x_1)\overline{u}(x_2) + \Delta \overline{u}(x_1)d(x_2)}{d(x_1)\overline{u}(x_2) + \overline{u}(x_1)d(x_2)} \quad A_L^{W^+} \propto \frac{-\Delta u(x_1)\overline{d}(x_2) + \Delta \overline{d}(x_1)u(x_2)}{u(x_1)\overline{d}(x_2) + \overline{d}(x_1)u(x_2)}$$

$W^{+/-}$ & Z Cross Sections

2009 PHENIX W A

 $A_L(W^+) = -0.86^{+0.30}_{-0.14}$ $A_L(W^-) = 0.88^{+0.12}_{-0.71}$

Phys.Rev.Lett 106:062001 (2011)

PHENIX: First forward W A_L

PHENIX: 2011 Forward W A_L

First A_L in forward region!

 Systematic errors are conservative & rely on MC S/B estimation

 Final systematic errors will be reduced via data driven techniques

 Improvements in trigger +
FVTX will reduce background for future measurements.

Forward W A_L using μ in RPC - **Daniel Jumper** - Session FG

Using FVTX to reduce background in W reconstruction - **Abraham Meles** -Session FG

PHENIX 2011 Mid-rapidity W A_L

STAR 2012 Midrapidity W A_L

Extended to |η| <1.4 & divided into 6 bins.

 Very systematic errors even in forward region

 W- A_L systematically larger than DSSV mean value.

DETAILS + FIRST Z A_L!! Jan Balewski Session FG

Impact on $\Delta u \& \Delta d$ PDFs?

Thanks to DSSV for permission to show preliminary analysis plots!

DSSV++ = DSSV+ run-9 pi0 and jet & STAR W

PHENIX + STAR W A_L After Run 13

PHENIX + STAR W A_{L} After Run 13

PHENIX FVTX will significantly improve S/B in forward W

FVTX -**Jeongsu Bok** -Session PC

STAR FGT will extend W reconstruction to |η|<2

STAR FGT -**Bernd Surrow** -**Emily Zarndt** -Session PC

Impact on $\Delta u \& \Delta d$ PDFs?

Thanks to DSSV for permission to show preliminary analysis plots!

DSSV++ DOES NOT include 2012 STAR data... only projections through Run 13

ΔG

- The inclusion of run 9 PHENIX + STAR data into the DSSV global analysis results in a gluon contribution to the spin of the proton of ~0.1, in the kinematic regime experimentally accessible.

- Both experiments are pursuing measurements that will access lower x ranges and help constrain the functional form of g(x).

$\Delta u + \Delta d$

- PHENIX has made the first W $\rm A_L$ measurement using muon detectors $\,$ in the forward region.

- Both STAR and PHENIX have new mid-rapidity W A_L results! A stellar performance by RHIC CAD in 2012 allowed STAR to construct the first η dependent asymmetry at mid-rapidity.

- When STAR's run 12 data is included in the DSSV global analysis, the flavor asymmetry of the light sea appears to be **larger** than current DSSV