Cross section measurements of kinematically reconstructed weak bosons in unpolarized *p+p* collisions at STAR

Salvatore Fazio

For the STAR Collaboration

Supported by:

2020 Fall Meeting of the Division of Nuclear Physics of the American Physical Society DNP 2020 New Orleans, LA (now held virtually), October 29 – November 1, 2020

Motivation: quark flavor ratio in PDFs

- Unpolarized d-bar/u-bar in PDFs can be probed via Drell-Yan
- E-866 suggests a trend where the dbar/ubar ratio appears to be decreasing at large-x.
- The preliminary SeaQuest trend appears to level out at higher x.
- Unpolarized W cross-section charge-ratios are also sensitive to quark/anti-quark distributions.

LO:
$$\frac{\sigma(W^+)}{\sigma(W^-)} = \frac{u(x_1)\overline{d}(x_2) + \overline{d}(x_1)u(x_2)}{\overline{u}(x_1)d(x_2) + d(x_1)\overline{u}(x_2)}$$

■ LHC coverage: ~10⁻³ < x < 10⁻¹

$$\left\langle x_{1,2}\right\rangle = \frac{M_W}{\sqrt{s}}e^{-\eta_l/2}$$

• STAR coverage:

- > Mid-rapidity $-1 < \eta < 1$ (TPC +BEMC) : 0.1 < x < 0.3
- > Forward EEMC $1.1 < \eta < 2: 0.06 < x < 0.4$
- Differential cross sections of weak bosons are key inputs in global fits of **unpolarized TMDs**
 - STAR constrains large x

RHIC and the STAR experiment

Beams: Vs= 510 GeV *p+p*; 50-60% polarization

- RHIC is the world's first and only polarized hadron collider
- Its top energy is enough to produce weak bosons

Rich weak boson program @ STAR

- 2009 W A_L (PRL)
- 2009 W/Z Cross Section (PRD)
- 2011+2012 W A_L (PRL)
- 2011 W/Z A_N (PRL)
- 2013 W A_L (PRD-Rapid Com.)
- And counting... (being analyzed)
 - 2017 double our sample!

S. Fazio (BNL)

How do we select W[±] bosons?

- Tag on a high p_T lepton [25 < E_T < 50 GeV]
- Lepton must be isolated:
 - $P_T^{el-track} / (\Sigma[P_T^{tracks} in R=0.7 cone] E_T^{el-cluster}) > 82\%$
 - (E^{2x2}/ E^{4x4}) > 96%
- Energy imbalance: no energy in opposite cone, E<11 GeV
- o Good vertex: |Z-vertex|<100 cm</p>
- o Identify lepton charge: (separate W⁺ and W⁻ samples)

 $0.4 < |Charge (TPC) \times E_T (EMC) / P_T (TPC)| < 1.8$

• Suppress QCD background: Signed P_T balance > 16 GeV/c

How do we reconstruct W[±] bosons?

Ingredients for the analysis

- Isolated electron
- Neutrino (not measured directly)
- Hadronic recoil

W boson momentum reconstruction technique well tested at FermiLab and LHC [CDF: PRD 70, 032004 (2004); ATLAS: JHEP 1012 (2010) 060]

□ Select events with the W-signature (STEP 1)

 \succ Isolated high P_T electron

 \Box Neutrino transverse momentum is reconstructed from missing P_T (Step 2)

- > Non-measured recoil particles accounted for via MC correction
- Neutrino's longitudinal momentum is reconstructed from the decay kinematics (Step 3)

$$M_{W}^{2} = (E_{e} + E_{v})^{2} - (\vec{p}_{e} + \vec{p}_{v})^{2}$$

|η| < 1

Backgrounds to W[±] boson selection

- QCD background (data-driven)
 - Satisfies e^{\pm} isolation cuts
 - Estimated by reversing Sign- p_T balance cut

Missing EEMC background

- Arises from a backward jet exiting STAR through the uninstrumented endcap ($-2 < \eta < -1.1$)
- Estimated from instrumented EEMC at 1.1 < η < 2

O Electroweak background

- Results from $Z^0 \rightarrow e^+e^-$ and $W \rightarrow \tau \nu \rightarrow eX$ decays
- Estimated from PYTHIA/MC simulations
- Overall contribution is small
- Backgrounds are subtracted from samples

$\sigma(W^+) / \sigma(W^-)$ versus boson's rapidity

STAR preliminary results:

- Combine RHIC run 11-12-13 ~360 pb⁻¹
- Cross section charge ratio measured vs. both the decay lepton and the boson's kinematics
- Systematics in novel R_W vs. y_W release are driven by boson's rapidity reconstruction

How do we select Z⁰ bosons?

Main selection criteria

$$pp \rightarrow Z^0 \rightarrow e^+e^-$$

- Tag on two high p_T leptons $[p_T > 25 \text{ GeV/c}]$
- Leptons must have opposite charge
- Leptons both coming from same vertex: |Z-vertex|<100 cm
- Suppress backgrounds: M_{INV} about ± 20% from nominal Z⁰ mass
 - 70 < $m_{\rm e+e-}$ < 110 GeV/c²
- Clean experimental reconstruction of decay leptons
- Negligible background found
- Cross section much lower than for the W production!
- **Selection efficiency also slightly lower than the Ws** \rightarrow two high-p_T leptons in final state

 $d\sigma/dp_T^Z$

- First released in June 2019
- Now updated with a new theory band (cyan)

- Overall uncertainty on luminosity (8.5%) not shown on the plot
- Systematics evaluated by
 - varying p_T^{lep} and M_Z cuts according to resolution
 - varying EMCal calibration gains by ± 4% (conservative value)
- Dominant systematics come from BEMC calibration gains
- Theory curves based on recent extractions of TMDPDFs

Conclusions

• STAR has a rich program in measuring unpolarized cross sections of weak bosons

- W+/W- data constrain d-bar/u-bar at x>~0.1-0.3 where current uncertainties are large
- Differential cross section constrains global fits of unpolarized TMDs at larger x than LHC
- Preliminary results of σ(W⁺)/ σ(W⁻) versus boson's rapidity including RHIC run13 have been shown for the first time at this venue
- STAR preliminaries are based on RHIC run 11+12+13, corresponding to ~360 pb⁻¹
 - Run 17 will double the sample!
 - Calibration of run17 data has been completed and reproduction of embedded MC is starting

Efficiency of selecting W[±]

- Computed from Pythia+GEANT simulations: Eff. = [#evt. Reco. trigger&selection]/[#evt. Gen. in acceptance]
- $\,\circ\,$ 2012-2013 efficiency is lower due to higher instantaneous luminosity
 - Results in more pile-up and less efficient track reconstruction
- $\,\circ\,\,$ New tracking algorithm was implemented for 2013 data production
 - > 2013 efficiency higher overall than 2012
- \circ Very small dependence on boson's charge \rightarrow small correction to W+/W- ratios

Efficiency of selecting Z⁰

- **Computed from Pythia+GEANT simulations:** Eff. = [#evt. Reco. trigger&selection]/[#evt. Gen. in acceptance] Ο
- 2012-2013 efficiency is lower due to higher instantaneous luminosity Ο
 - Results in more pile-up and less efficient track reconstruction
- New tracking algorithm was implemented for 2013 data production Ο
 - > 2013 efficiency higher overall than 2012
- Efficiency is lower than for Ws \rightarrow two final state leptons Ο

