Transverse single-spin asymmetries in W[±] and Z⁰ bosons production in p+p collisions at RHIC

Plan of the talk

- Physics motivations
- \diamond The W[±] selection and A_N measurement
- \diamond The Z⁰ selection and A_N measurement
- \diamond Future plans
- \diamond Conclusions

The much discussed sign change of the Sivers' function critical test for our understanding of TMD's and TMD factorization

Goal: measure sign change and pin down TMD-evolution by measuring A_N for γ , W^{\pm} , Z^0 , DY

Motivations

- Very high Q²-scale (~ W/Z boson mass)
- ➢ No fragmentation function
- \succ Asymmetry from lepton-decay is diluted \rightarrow Full kin. reconstruction of the boson needed
 - > Z⁰ easy to reconstruct (but small cross-section)
 - > W kin. can be reconstructed from the hadronic recoil (first time at STAR)

Sea quarks are mostly unconstrained... but they can give a relevant contribution!

M. G. Echevarria, A. Idilbi, Z-B Kang, and I. Vitev arXiv:1401.5078 Revised error bands (private communication) use positivity bounds for the sea quarks

W[±] data can constrain the sea-quark Sivers function

Strategy

Ingredients for the analysis

- Isolated electron
- neutrino (not measured directly)
- Hadronic recoil

□ Select events with the W-signature

- > Isolated high $P_T > 25$ GeV electron
- > Hadronic recoil with total $P_T > 18 \text{ GeV}$

Neutrino transverse momentum is reconstructed from missing P_τ

Neutrino's longitudinal momentum is reconstructed from the decay kinematics

$$M_{W}^{2} = (E_{e} + E_{v})^{2} - (\vec{p}_{e} + \vec{p}_{v})^{2}$$

The STAR detector @ RHIC TPC (|n| < 1.4) Barrel EMCAL (|n| < 1)

Data & MC PYTHIA tuning

Monte Carlo

- → **PYTHIA** reconstructed trough GEANT simulated STAR detector
- \rightarrow Perugia tune with hard P_T > 10 GeV
- → PYTHIA embedded into real zerobias pp events

Data sample

- **pp** transverse (collected in 2011)
 @ √500 GeV
- Integrated luminosity: ~ 25 pb⁻¹
- Events triggered in Barrel EMCAL

Background

Electron identification

- Isolation: (P^{track}+E^{cluster}) / Σ[P^{tracks} in R=0.7 cone] > 0.8
- Imbalance: no energy in opposite cone (E<20 GeV)
- E_T > 25 GeV
- Track $|\eta| < 1$
- |Z-vertex|<100 cm
- Charge separation (avoids charge misidentification): $0.4 < |Charge (TPC) \times E_T (EMC) / P_T (TPC)| < 1.8$
- Signed P_T balance > 18 GeV (rejects QCD Background)

$$\vec{P}_T^{bal} = \vec{P}_T^e + \sum \vec{P}_T^{recoil}$$

S. Fazio - PANIC 2014

Background estimation

Background estimated via MC normalized to recorded data luminosity

Positive-charge signal 1216 events

 $\Box Z \rightarrow ee$

 $\blacksquare W^{\scriptscriptstyle +} \rightarrow t v_t$

W⁺ sample

*Z*⁰ -> *ee* = 10.71 events [B/S = 0.88%] *W*⁺ -> *tv*_t = 22.92 events [B/S = 1.88%]

- Negative-charge signal 332 events
- Z → ee
- $\blacksquare W^{-} \rightarrow tv_{t}$

W⁻ sample

$$Z^0 \rightarrow ee = 9.77 \text{ events } [B/S = 2.94\%]$$

 $W^- \rightarrow tv_t = 4.62 \text{ events } [B/S = 1.39\%]$

QCD background estimation Data (W+)

W[−] sample

QCD = 11.30 events

Data-driven QCD background estimation

- <u>Reverse</u> of P_{τ} -balance cut [PT-balance < 15 GeV] \rightarrow Selects QCD events
- Plot lepton-P_T > 15 GeV
- QCD sample <u>normalized to the first P_T-bin [15-19 GeV]</u>

W⁺ sample

QCD = 19.37 events [B/S = 1.59%]

[B/S = 3.40%] Data (W-) Data (W+) 36.04 35.04 Mean Moon events RMS 6.023 Stents 200 RMS 6.014 STAR data STAR data Underflow Underflow 60 🕅 ΡΥΤΗΙΑ Ψ΄->τν, **₩ ΡΥΤΗΙΑ W⁺->**τν Overflow Overflow 180 PYTHIA Z⁰-> e⁺e PYTHIA Z⁰-> e⁺e 50 332 Integral ntegral 1216 160 data driven QCD data driven QCD 140 40 120 30 final sample 100 final sample 80 P₊ > 25 GeV P_T > 25 GeV 20 60 40Ē 10 20 9^E 20 40 60 80 60 80 Ρ^{lep} [GeV/c] 20 80 40 P^{lep}_T [GeV/c]

COMMENTS:

- Backgrounds under control!
- Z -> e⁺ e⁻ expected to have a comparable asymmetry

30.5

8.6

n

1633

RMS

Inderflow

STAR data

W P_T reconstruction

We calculate the recoil summing up all tracks and trackless electromagnetic clusters

- Matching track is a track which extends to the BEMC and matches a firing tower (< 7 cm)
- Trackless tower is a firing tower in the BEMC with no matching tracks and Energy > 200 MeV
- Recoil is calculated summing the momenta of all tracks which do not belong to the electron candidate + all firing trackless towers

Aug. 25, 2014

S. Fazio - PANIC 2014

10

Monte Carlo correction

The Correction method –

- \checkmark Read recoil P_T bin from data
- \checkmark Project correction factor for corresponding P_T-bins
- \checkmark Normalize the projection distribution to 1
- \checkmark Pick a correction value sampled from the projection distribution

3.623

2.225

7302

6.815e+04

MC test:

After MC correction

 \rightarrow very good agreement with RhicBOS (fully re-summed NNL/NLO calculation) and **PYTHIA** predictions

$WP_T - Data/MC$

We add to our selection:

• Track- P_{T} in the recoil > 0.2 GeV

• Total recoil- $P_T > 0.5 \text{ GeV}$

GOOD data/MC agreement after P_{T} correction

S. Fazio - PANIC 2014

W P_z reconstruction

 ✓ W longitudinal momentum (along z) can be calculated from the invariant mass. Currently we assume constant M_w (for W produced on shell)

$$M_{W}^{2} = \left(E_{e} + E_{v}\right)^{2} - \left(\vec{p}_{e} + \vec{p}_{v}\right)^{2}$$

✓ Neutrino longitudinal momentum component from quadratic equation

$$\left|\vec{p}_{T}^{e}\right|^{2} \left(p_{z}^{v}\right)^{2} - 2Ap_{z}^{e}p_{z}^{v} + \left|\vec{p}_{T}^{v}\right|^{2} \left|\vec{p}^{e}\right|^{2} - A^{2} = 0, \quad where \quad A = \frac{M_{W}^{2}}{2} + \vec{P}_{T}^{e} \cdot \vec{P}_{T}^{v}$$

✓ <u>Two solutions</u>!

Smaller $|Pz| \rightarrow \text{first solution}$ Larger $|Pz| \rightarrow \text{other solution}$

MC challenge - systematics

- > Tables (W rapidity- P_T bins) for A_N prediction with evolution given by Z-B Kang [arXiv:1401.5078]
- > Use PYTHIA MC prediction for W^- (the A_N prediction is always positive)
- \succ Assign each prediction value from the tables according to the generated values of W-rapidity and P_T
- > After the event is fully reconstructed we look at the P_T distributions of A_N

> We fit a Gaussian distribution and compare the means

> We rely on the fact that the input asymmetry has the same dependence as the data

The same is done for W-P_T

S. Fazio - PANIC 2014

A_N vs W-rapidity

 $A_{N} \approx \frac{1}{P} \frac{\sqrt{N_{R}^{\uparrow} N_{L}^{\downarrow}} - \sqrt{N_{L}^{\uparrow} N_{R}^{\downarrow}}}{\sqrt{N_{R}^{\uparrow} N_{L}^{\downarrow}} + \sqrt{N_{L}^{\uparrow} N_{R}^{\downarrow}}}$

15

✓ We fit $sin(\phi)$ modulation with phase = $\pi/2$

✓ Average RHIC polarization for 2011 transverse p-p data \rightarrow P = 53%

We use the "left-right" formula to cancel dependencies on geometry and luminosity (in backup slides)

A_N vs W-P_T

Z⁰ Asymmetry

 $pp \rightarrow Z^0 \rightarrow e^+e^-$

- Clean experimental momentum reconstruction
- Negligible background
- electrons rapidity peaks within tracker accept. (|η|< 1)
- Statistics limited

Z⁰ boson selection criteria

- Two tracks each pointing to a cluster (no isolation requirements)
- $E_T > 25$ GeV for both candidates
- The two candidate tracks have opposite charge
- |Zvertex|< 100 cm
- Invariant Mass within \pm 20% from the nominal M_z

2011 pp-tran. ~25 pb⁻¹: **50 events** pass selection

...and the future?

RHIC is capable of delivering ~900 pb⁻¹ transverse p-p in 2016

- Possibility for significantly measure A_N for Ws within a few % in several W-P_{τ}, y bins.
- Syst. from 2011 analysis rely on predictions and can be improved with more data
- Possibility to measure the very clean Z⁰ channel.

Goal: measure sea-quark Sivers and pin down TMD-evolution

How?

- \rightarrow Measure A_N for γ , W[±], Z⁰, DY
- \rightarrow DY and W[±], Z⁰ give Q² evolution
- \rightarrow W[±] give sea-quark Sivers
- \rightarrow All three A_N give sign change

Summary

- First measurement of A_N for W[±] and Z⁰ production at RHIC by reconstruction of the boson kinematics, using a sample of 25 pb⁻¹ transverse p-p data @ V500 GeV collected by STAR
- Systematic uncertainties are constrained within < 15%
- A_N in the Z⁰ boson channel \rightarrow clean & background free, but need lumi
- We have a proof-of principle $\rightarrow A_N$ for Ws can be measured at STAR, new RHIC data (we requested to deliver up to L~900 pb⁻¹) can give statistical significance to test the Sivers' sign change and pin down TMD evolution
- RHIC run 2016: STAR can have access to A_N for γ, W[±], Z⁰, DY in a single experiment, simultaneously!

BACKUP

Motivations

♦ Unpolarized asymmetries: Quantitative calculation of Pauli blocking does not explain $\overline{d}/\overline{u}$ ratio → Non-pQCD effects are large for sea quarks

Polarized asymmetries: valence quarks distributions well determined from DIS measurements

The W[±]/Z⁰ transverse asymmetry:

- Very high Q²-scale (~ W/Z boson mass)
- No fragmentation function
- Asymmetry from lepton-decay is diluted
 - → Full kin. reconstruction of the boson needed

W P₇ reconstruction

Determine the fraction for correctly reconstructed events (for both solutions)

W plain asymmetry

Z⁰ plain asymmetry

Geometrical Asymmetry

Z⁰ lepton candidates

Lepton candidate go to central rapidity and have large P_{T}

S. Fazio - PANIC 2014