J/ψ production at the STAR experiment

Pavla Federičová

(Czech Technical University in Prague) for the STAR Collaboration

XXIII International Baldin Seminar on High Energy Physics Problems

September 19 - 24, 2016

Why study quarkonia?

 quarkonium suppression in heavy ion collision due to color screening effect in Quark-Gluon Plasma (QGP)

T. Matsui and H. Satz PLB 178 (1986) 416

- High temperature
- QGP thermometer → different quarkonium states melt at different temperatures Á. Mócsy, P. Petreczky , Phys. Rev. D77, 014501 (2008)

September 19-24, 2016

Quarkonium production

- quarkonium production mechanism in elementary collisions not fully understood
- observed J/ ψ is a mixture of various production mechanisms:
 - **Prompt:** direct production (60%), decay of Ψ (2S) (10%) and χ_c (30%)
 - Non-prompt: B-mesons decay (up to 25% at 12 GeV/c)

- suppression and enhancement of the quarkonium production due to the other effects:
 2 Au-Au (200 A GeV) -- primerdial w/fte+Bfd
 - Cold Nuclear Matter Effects:
 - (anti)shadowing
 - Cronin effect
 - Nuclear absorption
 - Hot Nuclear Matter Effects:
 - Regeneration

September 19-24, 2016

Phys. Lett. B772(2013) 55

Nuclear modification factor R_{AA}

 Modification of heavy quarkonium production in nucleus+nucleus collisions (A+A) compared with p+p collisions is quantified by the nuclear modification factor :

$$R_{AA} = \frac{1}{\langle N_{coll} \rangle} \frac{d^2 N_{AA} / dp_T dy}{d^2 N_{pp} / dp_T dy}$$

$$R_{AA} > 1 \dots \text{enhancement}$$

$$R_{AA} = 1 \dots \text{no medium effects}$$

$$R_{AA} < 1 \dots \text{suppresion}$$

- p+p collision : baseline for heavy ion collisions, study of quarkonium production mechanism
- **d+Au collision:** study of Cold Nuclear Matter effects
- Au+Au, U+U collision : study of hot/dense medium effects

The Solenoid Tracker At RHIC (STAR)

September 19-24, 2016

The Solenoid Tracker At RHIC (STAR)

J/ψ p_T spectra in p+p collisions

- CGC+NRQCD (low $p_{_T}$) and NLO NRQCD (high $p_{_T}$) together can describe the data well both at 200 GeV and 500 GeV

J/ψ in d+Au collisions

- study of Cold Nuclear Matter (CNM) effects
- R_{dAu} ≈ 1 (no suppression) for high p_T influence of CNM effects is small
- PHENIX low p_{τ} results indication of sizable CNM effects
- STAR results consistent with PHENIX results and EPS09 model within large uncertainties.

September 19-24, 2016

J/ψ production vs. event activity

- stronger-than-linear growth for relative J/ ψ yield \implies soft and hard processes are correlated
- PYTHIA8 and Percolation model reproduce trends in data well
- hint of different trends for low and high pT J/ $\!\psi$
- similar trend at LHC and RHIC

J/ψ suppresion in Au+Au collisions

e+e- channel

- larger suppression at low p_T than at high p_T at all centralities
- suppression decreasing towards high \textbf{p}_{τ}
 - consistent with unity at high p_{τ} in semi/peripheral collisions
 - remaining suppression at high $p_{\scriptscriptstyle T}$ in central collisions
- model calculations (including color screening, regeneration, B feed-down and formation time effect) can qualitatively describe the data

Phys. Rev. C 90 (2014) 24906 Phys. Rev. Lett. 98, 232301 (2007) Phys. Lett. B722, 55 (2013)

J/ψ in Au+Au collisions

e+e- channel

- suppression increases with centrality
- high p_T data less suppressed than low p_T
 - no recombination
 - no CNM effects (from d+Au collision)
- models including initial production and recombination can qualitatively describe the data
- suppression of high- $p_{\tau} J/\psi$ in central Au+Au collisions

J/ψ elliptic flow

e+e- channel

STAR, PRL 111 (2013) 052301 PRL 97 (2006) 232301 PLB 595 (2004) 202 ArXiv: 0806.1239 Phys. Lett. B655, 126 (2007) NPA 834 (2010) 317 U.W. Heinz and C. Shen, (private communication)

disfavor the scenario that J/ ψ with p_T > 2 GeV/c are produced dominantly by coalescence of fully thermalized charm quarks

J/ψ p_T spectrum in Au+Au collisions

- first mid-rapidity measurement of J/ ψ yield in Au+Au collisions via dimuon channel for 0 < p_{\tau} < 15 GeV/c
- consistent with the published dielectron results

J/ψ suppresion in Au+Au collisions

µ+µ- channel

- consistent with dielectron channel results within uncertainties in all centralities
- strong suppression at low p_{τ} : dissociation, regeneration, CNM effects
- less suppression at higher $p_{\scriptscriptstyle T}$: dissociation, longer formation time

Centrality dependence: RHIC vs LHC

µ+µ- channel

- STAR data are consistent with PHENIX but have better statistical precision
- $p_{\tau} > 0$ GeV/c : more suppressed at RHIC than at LHC in central collisions
- p_{τ} > 5 GeV/c : less suppressed at RHIC than at LHC in all centralities

Transport models: RHIC vs LHC

µ+µ- channel

Model I at RHIC:Y. Liu et al. - PLB 678 (2009) 72 Model I at LHC: K. Zhou et al. - PRC 89 (2014) 054911 Model II at RHIC: X. Zhao and R. Rapp - PRC 82 (2010) 064905 Model II at LHC: E. Scomparin - NPA 859 (2011) 114

- p_τ > 0 GeV/c : both transpost models including dissociation and recombination effects qualitatively describe centrality dependence at RHIC, but tends to overestimate suppression at LHC
- $p_{\tau} > 5$ GeV/c : there is tension among transport models and data

J/ψ elliptic flow

µ+µ- channel

- measure the second-order Fourier coefficient (v₂)
- primordial: little or zero v₂
- regenerated: inherit v₂ from constituent charm quarks
- first measurement of $J/\psi \ v_{_2}$ in di-muon channel
- results are consistent with di-electron channel within large error bars

J/ψ in U+U collisions

- U nuclei are non-spherical and larger than Au nuclei
- in U+U collisions the energy density of the created medium is expected to be higher (20% "side+side", up to 30% "tip+tip") than in Au+Au collisions
- central U+U collisions → energy density is the highest → good tool for studying the QGP

Phys. Rev., C 84. 054907 (2011)

J/ψ in U+U collisions

ВA $\rightarrow J/\psi + X$ Zhao-Rapp 200 GeV Zhao-Rapp 62.4 GeV Au+Au 200 GeV Zhao-Rapp 39 GeV 1.6 Au+Au 62.4 GeV (2010) N_{coll} uncertainties (201 p+p 62.4 GeV uncertainty Au+Au 39 GeV 1.4p+p 39 GeV uncertainty U+U 193 GeV MinBias 1.2 p+p 200 GeV stat, uncert. 064905 014908 0.8 C87, C82, 0.6 Rev. Rev. 0.4 Phys. Phys. STAR Preliminary 0.2 50 100 150 200 250 300 350 400 Npart

 suppression of J/ψ production in U+U collision at 193 GeV is similar to that observed in Au+Au collision at 200 GeV

- U+U MB data is consistent with Au+Au results at similar N_{part}
- no significant energy dependence observed in Au+Au collisions at 39, 62.4 and 200 GeV

Summary

- J/ ψ production in p+p 200 GeV and 500 GeV collisions:
 - $p_{\scriptscriptstyle T}$ spectra described well by CGC+NRQCD and NLO NRQCD calculations
- J/ ψ production in d+Au collisions:
 - high $p_{\tau} \rightarrow$ influence of CNM effects is small
 - low $p_{\tau} \rightarrow$ indication of sizable CNM effects
- J/ ψ production vs. event multiplicity shows correlation between soft and hard processes \rightarrow similar trend at RHIC and LHC
- J/ ψ production in Au+Au collisions:
 - significant suppression increases with centrality and decreases with p_{τ} clear QGP signal
 - different models including color screening and regeneration can qualitatively describe the data
 - di-muon data consistent with di-electron data
- collective behavior of J/ψ : v_2 consistent with zero for $p_T > 2$ GeV/c
 - \rightarrow contribution from coalescence of fully thermalized charm quarks is small
- J/ ψ production in U+U collisions:
 - similar suppression patterns to Au+Au collisions

Thank you!

September 19-24, 2016

BACK UP

September 19-24, 2016

J/ψ polarization

• study via the angular distribution of the decay lepton pair (J/ $\psi \rightarrow$ e+e-)

 $\frac{d^{2}\sigma}{d\cos\theta \,d\phi} \propto 1 + \lambda_{\theta} \cos^{2}\theta + \lambda_{\theta\phi} \sin 2\theta \cos\phi + \lambda_{\phi} \sin^{2}\theta \cos 2\phi$

- Helicity (HX) frame: z along $p_{J/\psi}$ in collision center of mass
- Collins-Soper (CS) frame: z along bisector of the angle formed by one beam direction and the opposite direction of the other beam in the J/ ψ rest frame
- longitudinal polarization observed at high p_{τ}

J/ψ polarization

 $\frac{d^{2}\sigma}{d\cos\theta \,d\phi} \propto 1 + \lambda_{\theta} \cos^{2}\theta + \lambda_{\theta\phi} \sin 2\theta \cos\phi + \lambda_{\phi} \sin^{2}\theta \cos 2\phi$

- towards longitudinal polarization with increasing \boldsymbol{p}_{τ}

September 19-24, 2016

XXIII Baldin ISHEPP

V=ρ, ω, φ, J/ψ

- observed excess of very low p_τ J/ψ in peripheral collisions
- features consistent with coherent photo-nucleus interaction

Very low $p_T J/\psi$ excess