

Experimental Investigations of Chiral Magnetic Effects

Evan Finch

Southern CT State University

for the STAR Collaboration

2022 RHIC/AGS ANNUAL USERS' MEETING

Supported in part by U.S. DEPARTMENT OF ENERGY Office of Science

Chiral Magnetic Effect

1) Chirality imbalance among all light quark flavor from topological fluctuations of gluon fields $(N_L^f - N_R^f) = 2Q_w$ i.e. "Local Parity Violation"

2) Large magnetic field, generated mostly by spectator protons

Combine to give the CME: net electric charge flow along (or opposite to, depending on sign of Q_w in this event) the magnetic field direction

CME Sensitive Observables : $\Delta \gamma$

S. A. Voloshin, Phys. Rev. C 70, 057901 (2004)

$$\gamma^{\alpha,\beta} \equiv \left\langle \cos(\phi^{\alpha} + \phi^{\beta} - 2\psi_2) \right\rangle$$

$$\Delta \gamma = \gamma^{OS} - \gamma^{SS}$$

2nd order event plane (1st order adds no more information here)!

Key backgrounds:

- v₂+(clusters, local charge conservation)
- 3-particle correlations

Experimental Search With Isobar Collisions

S. A. Voloshin, Phys. Rev. C70 (2004) 057901; S. A. Voloshin, Phys. Rev. Lett. 105 (2010) 172301; W.-T. Deng, et al Phys. Rev. C94 (2016) 041901; Khachatryan Vet al.(CMS) Phys. Rev. Lett.118 (2017) 122301; Adam J et al.(STAR) Phys. Lett. B 798 (2019) 134975

Details of Isobar Blind Analysis

Isobars: Multiplicity and v₂

M. S. Abdallah et al. (STAR) Phys. Rev. C, 105 (2022) 014901

6

Isobar: $\Delta \gamma$ Measurement Using Full TPC

Summary of the Isobar Blind Analysis^{M. S. Abdallah et al. (STAR) Phys. Rev. C, 105 (2022) 014901}

From the blind analysis

- No pre-defined criterion is satisfied for the observation of CME
- Precision of 0.4% is reached in the ratio of observables between the two systems.
- $\Delta \gamma / v_2$ ratios are below unity mainly driven by the multiplicity difference between the two isobars

Summary of the Isobar Blind Analysis^{M. S. Abdallah et al. (STAR) Phys. Rev. C, 105 (2022) 014901}

- No pre-defined criterion is satisfied for the observation of CME
- Precision of 0.4% is reached in the ratio of observables between the two systems.
- $\Delta \gamma / v_2$ ratios are below unity mainly driven by the multiplicity difference between the two isobars

 $\begin{array}{l} \text{Additional} \\ \text{Correction:} \\ (\text{PRELIMINARY}) \underbrace{(N \Delta \gamma / v_2^*)^{\text{Zr}}}_{(N \Delta \gamma / v_2^*)^{\text{Zr}}} \approx 1 + \frac{\Delta \epsilon_2}{\epsilon_2} - \frac{\Delta \epsilon_{\text{nf}}}{1 + \epsilon_{\text{nf}}} + \frac{\epsilon_3 / \epsilon_2 / (N v_2^2)}{1 + \epsilon_3 / \epsilon_2 / (N v_2^2)} \left[\frac{\Delta \epsilon_3}{\epsilon_3} - \frac{\Delta \epsilon_2}{\epsilon_2} - \frac{\Delta \epsilon_3}{\epsilon_2} \right] = 0 \\ \end{array}$ Δv_2^2 v_{2}^{2} $\epsilon_{2} = \langle \cos(\phi_{a} + \phi_{b} - 2\phi_{cluster}) \rangle \frac{N_{2p}v_{2,2p}}{Nv_{2}} \quad \epsilon_{nf} = v_{2,nf}^{2}/v_{2,true}^{2}$ Estimation by 2-D de Contribution of direct 3-particle correlations. Estimation by 2-D decomposition of 2-Flowing cluster background scales with N_{2p}/N^2 Estimation from HIJING gives particle correlations gives $\frac{-\Delta \epsilon_{nf}}{1+\epsilon_{nf}} = (0.65 \pm 0.11 \pm 0.22)\%.$ $-(0.85 \pm 0.26 \pm 0.44)\%$ Estimated by measuring N_{2p} directly in data $\frac{\Delta\epsilon_2}{\epsilon_2} = (1.45 \pm .08)\%$ STA Evan Finch

Preliminary Isobar Background Estimate (Post-Blinding)

Isobar post-blinding: $\Delta \gamma$ results consistent with preliminary background estimate within current uncertainty.

Isobar: Charge Separation Measurement with $oldsymbol{R}_{\psi_2}$

N. Magdy et al. Phys. Rev. C, 97 (2018) 061901

1.08 $\boldsymbol{R}_{\psi_2}(\Delta S) = \boldsymbol{C}_{\psi_2}(\Delta S) / \boldsymbol{C}_{\psi_2}^{\perp}(\Delta S)$ 1.05 L⁴, (AS^{*})², (AS^{*}) $C_{\psi_2} = \frac{N_{\text{real}}(\Delta S)}{N_{\text{shuffled}}(\Delta S)}$ Measurement of the in-0.99 $\Delta S = \begin{cases} \frac{\sum_{i=1}^{n+} w_i^+ \sin(\phi_i - \psi_2)}{\sum_{i=1}^{n+} w_i^+} \end{cases}$ plane and out-of-plane 1.08 distributions of the $\sum_{i=1}^{n-} w_i^{-} \sin(\phi_i - \psi_2)$ 1.05 (VSV) 1.02 B 1.05 dipole separation event- $\sum_{i=1}^{n-} w_i^$ by-event

 σ_{Ψ_2} is the Gaussian width of the respective $R(\Delta S'')$

Pre-defined CME criterion in blind analysis:

 $1/\sigma_{\psi_2}^{\mathrm{Ru}+\mathrm{Ru}} > 1/\sigma_{\psi_2}^{\mathrm{Zr}+\mathrm{Zr}}$

No significant difference is observed between two isobar systems

In studies with frozen code for blind analysis, R_{ψ_2} and $\Delta \gamma$ have similar sensitivities to CME signal and background; $1/\sigma_{R_{\psi_2}}^2 \approx N\Delta \gamma$ M. S. Abdallah *et al.* (STAR) Phys. Rev. C, 105 (2022) 014901

Isobar: κ_{112} Measurement with Full TPC

Pre-defined CME criteria: $\frac{(\Delta \gamma_{112}/\nu_2)^{\text{Ru+Ru}}}{(\Delta \gamma_{112}/\nu_2)^{\text{Zr+Zr}}} > \frac{(\Delta \delta)^{\text{Ru+Ru}}}{(\Delta \delta)^{\text{Zr+Zr}}}$

The background contributions due to local charge conservation (LCC) and transverse momentum conservation (TMC) have a similar characteristic structure that involves the coupling between v_2 and δ . So, we studied the the normalized quantity: $\kappa_{112} \equiv \frac{\Delta \gamma_{112}}{c_1 + \delta}$

Pre-defined CME criterion:

$$\frac{(\kappa_{112})^{Ru+Ru}}{(\kappa_{112})^{Zr+Zr}} > 2$$

Data not compatible with pre-defined CME criterion

200 GeV Au-Au Data, Using Participant and Spectator Planes

STAR

Evan Finch

- Can we reconcile this f_{CME} in Au-Au with isobar results? In isobar system, smaller B-field ($\sim A^{1/3}$), larger $\Delta \gamma$ "flowing clusters" background ($\sim 1/A$), would argue for a smaller f_{CME} in isobar compared to Au-Au. Y. Feng et. al., Phys. Lett. B820 (2021) 136549
- STAR 2022 BUR: with 20B events from runs 23 and 25, we can achieve better than 5σ significance provided the possible CME signal fraction remains at 8%

New Work: Measurement with STAR EPD @ 27 GeV

$$(\frac{\Delta\gamma}{\nu_2}) = \frac{\langle \cos(\alpha + \beta - 2\Psi) \rangle}{\langle \cos(2a - 2\Psi) \rangle}$$
 RP, PP, SP...

Under a 'pure background' scenario, all these ratios are equal. If different measurements yield different ratios, this would indicate a CME signal. We measure the elliptic flow and the charge separation, using $\Delta \gamma$ w.r.t. **EPD**inner first harmonic plane and the **EPD-outer second harmonic plane**.

The ratio of $\Delta \gamma / v_2$ between spectator-proton rich EPD Ψ_1 plane and participant-dominated Ψ_2 plane. CME-driven correlations will make this ratio >1.

New Work: Correlations with Other Parity-Odd Signals (Λ helicity)

Another observable sensitive to Local Parity Violation is net helicity of Λs in each event. F. Du et al. Phys.Rev.C 78 (2008) 044908

In each event, sign of charge separation dipole and net helicity are both determined by same $Q_w ! (N_L^f - N_R^f) = 2Q_w$

 \rightarrow In events where positive charges flow in B-field direction, expect $N_L^{\Lambda} - N_R^{\Lambda} > 0$

Can look for a correlation between sign of CME in each event and net handedness of Λ in that event. Two parity-odd observables with very different background sources (can also observe $\overline{\Lambda}$ as further systematics check and/or to increase statistical power)

> Need 1st order event plane (STAR EPD or ZDC/SMD)

New Work: Correlations with Other Parity-Odd Signals (Λ helicity)

In 27GeV Au+Au data, we use EPD for ψ_1 Measure covariance between $<math>a_1^+ - a_1^-$ and $N_L^\Lambda > N_R^\Lambda$ "positive charge flow along B-field" I helicity Λ "

Positive covariance (blue points above zero, 20-60% centrality) would indicate presence of two parity-odd effects tied to local parity violation

In 27GeV run 18 data, signal consistent with zero within uncertainty

2022 STAR BUR: This method will be target for future high-statistics Au-Au runs.

Summary: Current Experimental Status of CME in STAR

Isobar blind analysis: no method shows evidence for CME using pre-defined criteria.

Isobar post-blinding: $\Delta \gamma$ results consistent with preliminary background estimate within current uncertainty. We are working to reduce this uncertainty.

In 200GeV Au+Au data, spectator versus participant plane analysis shows signal $1-3\sigma$ above zero; working to better understand possible remaining non-flow contributions.

More novel analyses underway, including using 1st-order plane to investigate correlations with another parity-odd observable (Λ helicity)

ADDITIONAL SLIDES

Isobar: Extraction of CME fraction: approach II

STAR 🖈

Evan Finch

Uncertainty dominated, no significant difference is observed between two isobar systems

Evan Finch 🛛 STAR 🛧

 $a' = v_2^{\text{Ru}+\text{Ru}}/v_2^{\text{Zr}+\text{Zr}}$ Where:

Pre-defined CME criterion in the differential measurement:

$$\Delta \gamma^{\mathrm{Ru}+\mathrm{Ru}} - a' \Delta \gamma^{\mathrm{Zr}+\mathrm{Zr}} > 0$$

Do not see a significant difference between systems

M. S. Abdallah et al. (STAR) Phys. Rev. C, 105 (2022) 014901 J. Adam et al. (STAR), (2020), arXiv:2006.05035

Isobar: Elliptic flow & triangular flow measurements

Isobar: Multiplicity and Centrality

Glauber

Mean raw multiplicity density in Ru+Ru is larger than in Zr+Zr at matching centrality

Evan Finch STAR 🛧 23

Glauber model including larger size of Ru and smaller size of Zr provides a good fit to the multiplicity distribution.

New Work: Measurement with EPD @ 27 GeV

$$\gamma_{\alpha\beta} = \cos(\phi^{\alpha} + \phi^{\beta} - 2\Psi)$$
$$\Delta \gamma = \Delta \gamma^{BG} + \Delta \gamma^{CME}$$

If $\Delta \gamma^{BG} = b v_2$
$$(\frac{\Delta \gamma}{v_2}) = \frac{\langle \cos(\alpha + \beta - 2\Psi) \rangle}{\langle \cos(2a - 2\Psi) \rangle}$$
RP, PP, SP...

Under a 'pure background' scenario, all these ratios are equal. If different measurements yield different ratios, this would indicate a CME signal.

S. A. Voloshin, Phys. Rev. C 98 (2018) 054911

In a flow-driven background scenario, we expect

$$\frac{\Delta \gamma}{v_2}(\Psi_A) = \frac{\Delta \gamma}{v_2}(\Psi_B) = \frac{\Delta \gamma}{v_2}(\Psi_C) = \cdots$$

Where the Ψ_A , Ψ_B , Ψ_C ... are different planes at same/similar rapidities

We measure the elliptic flow and the charge separation, using $\Delta \gamma$ w.r.t. **TPC-EPD-inner first harmonic planes** and the **TPC-EPD-outer second** harmonic plane.

The ratio of $\Delta \gamma / v_2$ between spectator proton rich EPD Ψ_1 plane and participant dominated Ψ_2 plane is presented — CME driven correlations will make this ratio >1.

STAR 🖈