

Updates on Flavor Production from STAR Sooraj Radhakrishnan (for the STAR Collaboration) Kent State University/Lawrence Berkeley National Laboratory

Supported in part by

U.S. DEPARTMENT OF

ENERGY

Flavor Production at STAR

STAR, arXiv:2001.02852

- Heavy flavor at top RHIC energies:
 - Probe Quark Gluon Plasma lacksquare
- Light and strange flavor production in BES:
 - Nature of the produced medium
 - Canonical suppression of strangeness
- High μ_B region, hypernuclei production:
 - Hyperon contribution to nuclear EoS
 - Charge symmetry breaking

Sooraj Radhakrishnan (for STAR Collaboration)

STAR Detector

Event Plane Detector

endcap TOF

Time Projection Chamber

Datasets and STAR BES-II

- Collision energies: 200 7.7 GeV, μ_B: 20 — 420 MeV
- Access with FXT to high baryon density regions with μ_B up to 720 MeV

Beam Energy	$\sqrt{s_{ m NN}}$	$\mu_{ m B}$	Run Time	Number Events	Date	5	SIAR BES	5-II, CO	llider mode data t	акіпд
(GeV/nucleon)	(GeV)	(MeV)		Requested (Recorded)	Collected	Deem Energy	10		Number Exector	D
31.2	7.7 (FXT)	420	0.5 + 1.1 davs	100 M (50 M + 112 M)	Run-19+20	Beam Energy	$\sqrt{s_{\rm NN}}$	$\mu_{\rm B}$	Number Events	D
19.5	6.2 (FXT)	487	1.4 days	100 M (118 M)	Run-20	(GeV/nucleon)	(GeV)	(MeV)	Requested (Recorded)	Coll
13.5	5.2 (FXT)	541	1.0 day	100 M (103 M)	Run-20	13.5	27	156	(560 M)	Ru
9.8	4.5 (FXT)	589	$0.9 \mathrm{~days}$	100 M (108 M)	Run-20	9.8	19.6	206	400 M (582 M)	\mathbf{Ru}
7.3	3.9 (FXT)	633	$1.1 \mathrm{~days}$	100 M (117 M)	Run-20	7.3	14.6	262	300 M (324 M)	\mathbf{Ru}
5.75	3.5 (FXT)	666	$0.9 \mathrm{~days}$	100 M (116 M)	Run-20	5.75	11.5	316	230 M (235 M)	Ru
4.59	3.2 (FXT)	699	2.0 days	100 M (200 M)	Run-19	4.59	9.2	373	160 M (162 M)	Run-2
3.85	3.0 (FXT)	721	4.6 days	100 M (259 M)	Run-18	3.85	7.7	420	100 M (100 M)	Ru

STAR BES-II, FXT data taking

Sooraj Radhakrishnan (for STAR Collaboration)

Statistics comparison to BES-I

• Successful completion of BES-II and FXT data taking, thanks to excellent RHIC performance!

Sooraj Radhakrishnan (for STAR Collaboration)

Heavy flavor at top RHIC energies: Probe Quark Gluon Plasma

- Light and strange flavor production in BES:
 - Nature of the produced medium
 - Canonical suppression of strangeness
- High µ_B region, hypernuclei production:
 - Hyperon contribution to nuclear EoS
 - Charge symmetry breaking

Energy Dependence of HF Electron v₂

- Large v₂ for D mesons at 200 GeV, comparable to light hadrons
- HF flow at lower energies? Temperature dependence?
- High statistics data at 54.4 and 27 GeV

Energy Dependence of HF Electron v₂

- Large v₂ for D mesons at 200 GeV, comparable to light hadrons
- HF flow at lower energies? Temperature dependence?
- High statistics data at 54.4 and 27 GeV

- Similar v₂ for HF electrons at 200 and 54.4 GeV, hint of smaller v₂ at 27 GeV
- Models fail describing data at low p_T (< 1.4 GeV/c) for 54.4 GeV

Sooraj Radhakrishnan (for STAR Collaboration)

Talk by Shenghui Zhang: 19/05 Thu, 09.50 (D)

Energy Dependence of J/ψ Suppression

- J/ψ suppression: Interplay of color screening and regeneration
- 10x more data at 54.4 GeV than for previous measurements at 62.4 and 39 GeV

- Similar J/ψ R_{AA} values between 54.4 and 200 GeV
- Will help constrain the contributions from color screening and regeneration

J/ψ Production in Jet in p+p Collisions

- Produced directly or in parton shower (associated with jets)?

Sooraj Radhakrishnan (for STAR Collaboration)

 J/ψ production mechanism in p+p collisions: also important to understand suppression in QGP

Talk by Kaifeng Shen: 21/05 Fri, 10.10 (D)

Sooraj Radhakrishnan (for STAR Collaboration)

Heavy flavor at top RHIC energies: Probe Quark Gluon Plasma

Light and strange flavor production in BES:

- Nature of the produced medium
- Canonical suppression of strangeness

High µ_B region, hypernuclei production:

- Hyperon contribution to nuclear EoS
- Charge symmetry breaking

Strange hadron production at 54.4 GeV

- Suppression at high p_T : Parton energy loss
- Separation between baryons and mesons at intermediate p_T (2 < p_T < 6 GeV/c): From coalescence hadronization

Canonical Suppression: φ, Ξ Production at 3 GeV

- Low energies and/or small systems: Local strangeness conservation
- Canonical instead of Grand Canonical Ensemble describes statistical production

• ϕ/K^{-} and ϕ/Ξ^{-} measurements at 3 GeV strongly disfavor GCE

Sooraj Radhakrishnan (for STAR Collaboration)

 $\phi(\mathbf{s}\overline{\mathbf{s}}), S = 0$ $K^{-}(\mathrm{s}\bar{\mathrm{u}}), S = 1$ $\Xi^{-}(\mathrm{dss}), S = 2$

Statistical models: A. Andronic et al, Nucl. Phys. A 772, 167; J. Cleymans et al, Phys. Lett. B 603, 146

Partonic Collectivity: Strange Hadron Flow

 NCQ scaling holds for strange hadrons at 54.4 and 27 GeV: Dominance of partonic collectivity

Sooraj Radhakrishnan (for STAR Collaboration)

Strange hadrons: Small hadronic cross-section. Partonic vs hadronic contribution to flow

Mass ordering at very low $(m_T - m_0)/n_q < ~ 0.4 \ GeV/c^2$

Talk by Prabhupada Dixit: 18/05 Wed, 10.10 (A)

Collectivity at 3 GeV

Sooraj Radhakrishnan (for STAR Collaboration)

- NCQ scaling holds for energies from 200 down to 4.5 GeV collisions

 Partonic collectivity
- v₂ values are negative and NCQ scaling breaks down at 3 GeV
 - Medium less dominated
 by partonic interactions

Talk by Guannan Xie: 18/05 Wed, 12.30 (B)

Collectivity at 3 GeV

Sooraj Radhakrishnan (for STAR Collaboration)

- UrQMD cascade mode fails to describe data
- Need baryonic mean field interactions to generate trends seen in data
- Medium dominated by baryonic interactions and nuclear EoS

Talk by Guannan Xie: 18/05 Wed, 12.30 (B)

Sooraj Radhakrishnan (for STAR Collaboration)

Heavy flavor at top RHIC energies: Probe Quark Gluon Plasma

Light and strange flavor production in BES:

- Nature of the produced medium
- Canonical suppression of strangeness

High µ_B region, hypernuclei production:

- Hyperon contribution to nuclear EoS
- Charge symmetry breaking

Hypernuclei Production at 3 GeV

- contribution to nuclear EoS
- Enhanced production of hypernuclei in high baryon density collisions

Sooraj Radhakrishnan (for STAR Collaboration)

• Lifetime, yield, flow of hypernuclei: Important to understand Y-N interactions and hyperon

Hypernuclei Production at 3 GeV

contribution to nuclear EoS

but lower than ⁴_A H yield

Sooraj Radhakrishnan (for STAR Collaboration)

• Lifetime, yield, flow of hypernuclei: Important to understand Y-N interactions and hyperon

Models: J. Steinheimer et al, Phys. Lett. B. 714,85; A. Andronic et al, Phys. Lett. B 697, 203 (Private *communincations*) ALICE: Phys. Lett. B 754, 360

 $^{3}_{\Lambda}$ H : $\tau = 232.1 \pm 29.2$ (stat) ± 36.7 (syst)[ps]

 $^{4}_{\Lambda}$ H : $\tau = 218.3 \pm 7.5$ (stat) ± 11.8 (syst)[ps]

• ⁴/_AH lifetime measurement most precise to date

• Thermal (with canonical ensemble) and coalescence model calculations describe $^{3}_{\Lambda}H$ yields,

Talk by Chenlu Hu: 21/05 Fri, 10.30 (B)

Hypernuclei Production: Rapidity Dependence

- Difference in rapidity distribution for ⁴_A between central and mid-central collisions

Sooraj Radhakrishnan (for STAR Collaboration)

Could be contributions from spectator reactions in ⁴/_A production in non-central collisions

Talk by Chenlu Hu: 21/05 Fri, 10.30 (B)

Hypernuclei Flow at 3 GeV

 Lifetime, yield, flow of hypernuclei: Importa contribution to nuclear EoS

Sooraj Radhakrishnan (for STAR Collaboration)

• Lifetime, yield, flow of hypernuclei: Important to understand Y-N interactions and hyperon

- Directed flow of hypernuclei suggests mass number scaling
- Indicates a coalescence production of hypernuclei

Talk by Chenlu Hu: 21/05 Fri, 10.30 (B)

Study of Charge Symmetry Breaking

E13 Collaboration: Phys.Rev.Lett 115, 222501 (2015)

- Large binding energy difference between ground states of mirror hypernuclei
- Comparable BEs for excited states
- HIC data can offer independent experimental measurements

Study of Charge Symmetry Breaking

Sooraj Radhakrishnan (for STAR Collaboration)

- Large binding energy difference between ground states of mirror hypernuclei
- Comparable BEs for excited states
- HIC data can offer independent experimental

$$B_{\Lambda} = (M_{\Lambda} + M_{core} - M_{hypernucleus})$$

 Potential to get better precision measurements with upcoming high statistics FXT datasets

- Comparable J/ ψ suppression and HF flow at 54.4 and 200 GeV Can help constrain temperature dependence of heavy quark dynamics in QGP
- Light flavor and strangeness production:
 - Canonical suppression of strangeness at 3 GeV
 - Medium dominated by baryonic interactions and nuclear EoS in 3 GeV collisions •
- Hypernuclei production:
 - Directed flow of ${}^{3}_{A}H$ and ${}^{4}_{A}H$ suggests mass number scaling and coalescence production
 - Thermal and coalescence models describe ${}^{3}_{A}H$ yields, but not ${}^{4}_{A}H$ yields •

Sooraj Radhakrishnan (for STAR Collaboration)

Summary and Outlook

Data from BES-II and FXT at other energies being analyzed on flavor production, flow ... Look forward to more exciting results from STAR

STAR Beam Use Request 2021

Single-Beam	$\sqrt{s_{\rm NN}}$	Run Time	Species	Events	Priority	
Energy (GeV/nucleon)	(GeV)			(MinBias)		
3.85	7.7	11-20 weeks	Au+Au	100 M	1	
3.85	3 (FXT)	3 days	Au+Au	300 M	2	
44.5	9.2 (FXT)	$0.5 \mathrm{~days}$	Au+Au	50 M	2	
70	11.5 (FXT)	$0.5 \mathrm{~days}$	Au+Au	50 M	2	
100	13.7 (FXT)	$0.5 \mathrm{~days}$	Au+Au	50 M	2	
100	200	1 week	0 ± 0	400 M	3 a	
100	200	I WCCK	0+0	200 M (central)		
8.35	17.1	2.5 weeks	Au+Au	$250 \mathrm{M}$	3 b	
3.85	3 (FXT)	3 weeks	Au+Au	2 B	3 c	

Successfully completed data taking for BES-II O+O run and high statistics (2B events) FXT data taking at 3 GeV to finish this year's run

Back Up

Strangeness flow at 54.4 GeV

Transverse momentum dependence of vn

Partonic collectivity: Strange hadron flow

- Hint of violation of mass ordering, at very low p_T
- Potentially from hadronic contribution to anti-proton v_2

Sooraj Radhakrishnan (for STAR Collaboration)

• Strange hadrons: Small hadronic cross-section. Partonic vs hadronic contribution to flow

Hypernuclei life time

Sooraj Radhakrishnan (for STAR Collaboration)

- Increased precision for lifetime measurements for ${}^{3}_{\Lambda}H$ and ${}^{4}_{\Lambda}H$
- ${}^{3}_{\Lambda}$ H lifetime close to that of Λ as expected due to the low binding energy

 $^{3}_{\Lambda}$ H : $\tau = 232.1 \pm 29.2$ (stat) ± 36.7 (syst)[ps]

 $^{4}_{\Lambda}$ H : $\tau = 218.3 \pm 7.5$ (stat) ± 11.8 (syst)[ps]

STAR ³/_AH Lifetime measurements

STAR 2021 Preliminary: 232 +- 29(stat) +- 37(syst) [ps] STAR(2019): 142 +24-21(stat) +- 31(syst) [ps] STAR(science): 182 +89-45(stat) +- 27(syst) [ps]

Identified hadron v1 and v2 at 3 GeV: Rapidity dependence

K⁻/K⁺, K⁺/π⁺ yield ratios at 3 GeV

• Flavor production in the high baryon density region

