Gluon polarization measurements with

Pibero Djawotho for the STAR Collaboration Texas A&M University 28 April 2011

Outline

- Introduction
- Inclusive probes
- Correlation measurements

The proton spin sum rule

 $\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L$

- Quark polarization $\Delta\Sigma \approx 0.3$ from polarized deep inelastic scattering
- Gluon polarization (ΔG) and orbital angular momentum (*L*) are poorly constrained
- A primary charge of RHIC spin physics \Rightarrow map $\Delta g(x)$

Polarized pp collisions at RHIC

Pibero Djawotho - GHP2011 - Gluon polarization measurements with STAR

30 p_T(GeV)

20

10

0

D qq̄→qq̄

E gg→qq

qq→gg

qq→gγ

qq→q'q'

 $q\bar{q} \rightarrow l\bar{l}$

0.8

0.4

Overview of ΔG program at STAR

- Inclusive probes: high statistics, fixed p_T samples wide x_{aluon} range
 - Neutral pions
 - Efficient, unbiased trigger
 - Dependence on fragmentation functions
 - Charged pions
 - No dedicated trigger, use jet patch trigger instead
 - Dependence on fragmentation functions
 - Jets
 - Jet patch trigger with bias near trigger threshold \Rightarrow dominant systematics
 - Limited p_T resolution and large energy scale uncertainty
 - No dependence on fragmentation functions
 - Large cross section, best statistical precision
- Correlation measurements: low statistics, direct access to x_{aluon}
 - Charged pions opposite jets
 - Trigger on jet patch, look for charged pion on away side
 - Dijets
 - Trigger on first jet and reconstruct second jet offline
 - Photon-jets
 - Select quark-gluon Compton scattering \Rightarrow clean signature
 - Direct extraction of ΔG
 - Very low statistics against high background from neutral meson decays

RHIC: The world's first polarized hadron collider

- Spin varies from rf bucket to rf bucket (9.4 MHz)
- Spin pattern changes from fill to fill
- Spin rotators provide choice of spin orientation
- Billions of spin reversals during a fill with little if any depolarization

The STAR detector

- During 2006, **STAR** measured A_{LL} for inclusive π^0 for three different rapidity regions
- Mid-rapidity result excludes large gluon polarization scenarios
- Larger rapidity correlates to stronger dominance of qg scattering with larger x quarks and smaller x gluons
- Expect A_{LL} to decrease as η increases

STAR inclusive charged pions

- **STAR** measured A_{LL} for inclusive charged pions during 2005
- $A_{LL}(\pi^+) A_{LL}(\pi^-)$ is sensitive to the sign of ΔG
- Difficult to trigger on charged pions
- Used the EMCal jet patch trigger as a surrogate, which introduces significant trigger bias (dominates syst. error band)

Jet reconstruction in STAR

2006 inclusive jet cross section

- Data well described by NLO pQCD+Hadronization+Underlying Event
- Hadronization+Underlying event corrections significant at low jet p_T

2006 inclusive jet A_{LL}

GRSV curves with cone radius 0.7 and -0.7 < η < 0.9

- Sampled 4.7 pb⁻¹ at 60% average beam polarization
- STAR data rule out several previous models of gluon polarization

DSSV – First global analysis with polarized jets

de Florian *et al.*, PRL **101**, 072001 (2008)

 First global NLO analysis to incorporate inclusive DIS, SIDIS, and RHIC pp data on equal footing

2009 upgrades

- 2009 jet patch trigger upgrades
 - Overlapping jet patches and lower E_{T} threshold improve efficiency and reduce trigger bias
 - Net increase of 37% in jet acceptance
 - Remove beam-beam counter trigger requirement:
 - Trigger more efficiently at high jet p_T
 - Measure non-collision background
 - Increased trigger rate enabled by DAQ1000
- Improvements in jet reconstruction
 - Subtract 100% of track momentum from struck tower energy (2009) instead of MIP (2006)
 - Overall jet energy resolution improved from 23% to 18%
- Sampled 20 pb⁻¹ at 58% average beam polarization

2006 vs 2009 inclusive jet A_{LL}

• 2009 STAR data is a factor of 3 (high- p_T) to >4 (low- p_T) more precise than 2006 STAR data

- Results fall between predictions from DSSV and GRSV-STD
- Precision sufficient to merit finer binning in pseudorapidity

2009 inclusive jet A_{LL}

- A_{LL} separated into two pseudorapidity ranges
- Models predict a ~20% reduction in A_{LL} from $|\eta| < 0.5$ to 0.5< $|\eta| < 1$
- A_{LL} falls between the predictions from **DSSV** and **GRSV-STD**

Projected sensitivity for future 500 GeV running

- 500 GeV collisions sample smaller $x_T = 2p_T / \sqrt{s}$
- Projected statistical uncertainties, following 2009 experience
- Expected asymmetries are quite small
 - Control of systematics (esp. relative luminosity) will be important

Correlation measurements

- Inclusive probes at fixed p_T sample broad x range \Rightarrow global analysis needed to disentangle shape of $\Delta g(x)$
- Reconstructing the entire final state (jets, hadrons, photons) provides information on initial parton kinematics at LO
- STAR is well suited for correlation measurements and full jet reconstruction with its large acceptance Pibero Djawotho - GHP2011 - Gluon polarization measurements with STAR

 Correlation measurement significantly increases the sensitivity of A_{LL}(π⁺)

measure these

Jet+hadron correlations at NLO de Florian, PRD **79**, 114014 (2009)

 NLO calculations show strong correlation between the real x and z values and LO estimates

2006 dijet cross section

- NLO theory predictions using CTEQ6M provided by de Florian with and without corrections for hadronization and underlying event from PYTHIA
- Statistical (lines) and systematic (rectangles) uncertainties shown
- Comparison to theory when including hadronization and underlying event effects shows good agreement within uncertainties

2006 dijet A_{LL}

Systematic uncertainties show effects on trigger of different theory scenarios
±8.3% scale uncertainty from beam polarization not shown

2009 dijet kinematic coverage

- Sufficient statistics to separate dijets into two kinematic regions
- East-East and West-West dijets sample asymmetric parton collisions \Rightarrow small
- x_{gluon} and large x_{quark}
- East-West dijets sample symmetric parton collisions $\Rightarrow x_{gluon} \approx x_{quark}$

2009 dijet A_{LL}

2009 STAR data are up to a factor of 3 more precise than 2006
STAR data fall between predictions of **DSSV** and **GRSV-STD**

Projected sensitivity for dijets at 500 GeV

70 80 90

70 80 90 100

$$x_1, x_2 = \frac{M}{\sqrt{s}} \exp\left(\pm \frac{\eta_3 + \eta_4}{2}\right)$$

- Higher energy accesses lower x_q
- Expect smaller A_{LL}

•

100 110

M [GeV/c²]

M [GeV/c²]

- Projections include information on trigger rates, etc., from 2009
- Uncertainties shown are purely statistical
- Maybe add EEMC-EEMC dijets to reach lowest x values once FGT is installed (?)

Gamma+jet: a long-term STAR goal

See M. Betancourt APS talk, Monday, May 2, 2011, Q10.00002 10:57AM-11:09AM

- 90% of gamma+jet yield from quark-gluon Compton scattering
- Provides the best resolution of the partonic kinematics
- Forward photons + mid-rapidity jets provide clean access to ∆g(x) via scattering off highly polarized valence quarks
- Signal yield is very small compared to dijet backgrounds
- Background suppression is VERY CHALLENGING

Gluon polarization with gamma+jet

- Sensitivity estimates including realistic photon efficiencies and purities, benchmarked with real data
 - Maybe higher purity with future isolation cuts using FGT

Conclusions

- STAR 2006 data play significant role in recent global analysis
- STAR 2009 results will have strong impact on determination of gluon polarization ⇒ stay tuned!

BACKUP SLIDES

From detector to particle jets

Trigger and reconstruction bias

- 1. Calculate PYTHIA A_{LL} at PARTICLE jet p_T
- 2. Calculate GEANT A_{LL} at DETECTOR jet p_T
- 3. Move GEANT A_{LL} from DETECTOR jet p_T to appropriate PARTICLE jet p_T
- 4. Calculate δA_{LL} =(PYTHIA-GEANT) $A_{LL} \Rightarrow$ trigger and reconstruction bias

Trigger and reconstruction bias

Uncertainty on A_{LL} is larger of maximum/minimum δA_{LL} for 3 models (GRSV-STD, GRSV-ZERO, DSSV) and positive/negative statistical error bar

Relative luminosities

- Relative luminosities are calculated using the beam-beam counters (BBC)
- Relative luminosity systematic from comparisons of BBC and zero-degree calorimeter (ZDC) rates
- Preliminary estimated systematic for A_{LL} (±0.0015) very conservative
- False asymmetries from jet data are consistent with zero

2009 dijet A_{LL}

$$A_{LL,j} = \frac{\sum_{k} \alpha_{jk} \left(\sum_{i} P_{B,i} P_{Y,i} (N_{5,i,k} + N_{10,i,k}) - P_{B,i} P_{Y,i} R_{i} (N_{6,i,k} + N_{9,i,k}) \right)}{\sum_{k} \alpha_{jk} \left(\sum_{i} P_{B,i}^{2} P_{Y,i}^{2} (N_{5,i,k} + N_{10,i,k}) + P_{B,i,j}^{2} P_{Y,i,j}^{2} R_{i} (N_{6,i,k} + N_{9,i,k}) \right)}$$

- The value of A_{LL} in a bin j is given by the above formula
 - α_{ik} are the matrix elements for the unfolding
- Changing the jet energy scale results in different unfolding matrices
- The calculation is repeated for the different matrices to get the uncertainty on A_{LL} due to the jet energy scale