1	New STAR results from the RHIC Beam Energy Scan II program
2	Sooraj Radhakrishnan (for the STAR Collaboration)
3	Kent State University
4	Lawrence Berkeley National Laboratory
F	The understanding of the OCD phase structure at finite baryon densities and the nature of the phase transition
5	from the hadronic to the Quark-Gluon Plasma phase dominated by partonic degrees of freedom depends crucially
7	on experimental measurements. The ongoing second phase of the Beam Energy Scan program at RHIC (BES-II)
8	focuses on exploring the high baryon density region of the QCD phase spase with high precision measurements.
9	The STAR experiment at RHIC has implemented several detector upgrades for BES-II including upgrades for the
10	Time Projection Chamber (TPC), a new Event Plane Detector (EPD) and the end-cap Time Of Flight detector,
11	that will enhance the kinematic reach and statistical precision of measurements. The BES-II also includes a
12	fixed target (FXT) program that extends the nucleon-nucleaon center of mass energy of collisions down to 3
13	GeV. In this talk we will present the latest results from the BES-II program at STAR including new results of

identified hadron production, collectivity, and criticality in $\sqrt{s_{NN}} = 3 - 20$ GeV Au+Au collisions at RHIC. Physics implications of these new results will also be discussed.