

Reconstruction of D[±] mesons in Au+Au collisions at $\sqrt{s_{\rm NN}}$ =200 GeV by the STAR experiment

Jan Vanek, for the STAR Collaboration

Nuclear Physics Institute, Czech Academy of Sciences

GDRI - International Research Network Meeting

18.07.2019

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

PHYSICS MOTIVATION

- Quark-Gluon Plasma (QGP) can be studied using relativistic heavy-ion collisions
- Only indirect study through production of final state hadrons
 - Light flavor hadrons
 - Heavy flavor hadrons
- At RHIC energies, charm quarks are produced predominantly through hard partonic scatterings at early stage of Au+Au collisions
 - They experience the whole evolution of the medium
- Charm quark energy loss in the medium can be studied by measurement of open-charm meson nuclear modification factor R_{AA}

D⁰ NUCLEAR MODIFICATION FACTOR

• Nuclear modification factor:

 $R_{\rm AA}(p_{\rm T}) = \frac{{\rm d}N_{\rm D}^{\rm AA}/{\rm d}p_{\rm T}}{\langle N_{\rm coll}\rangle\,{\rm d}N_{\rm D}^{\rm pp}/{\rm d}p_{\rm T}}$

- D⁰ mesons suppressed in central Au+Au collisions
 - Strong interactions between charm quarks and the medium
 - Suppression of D⁰ mesons comparable to light flavor ^{0.5} hadrons at RHIC and D mesons at LHC
 - Reproduced by models incorporating both radiative[₹]_{1.5} and collisional energy losses, and collective flow
- Measurement of D[±] is complementary to that of D⁰
 - Independent cross-check of the D⁰ measurement
 - First measurement of D^\pm at STAR three body decay

11.06.20

STAR DETECTOR

- Solenoidal Tracker At RHIC
- Heavy Flavor Tracker (HFT, 2014–2016) is a 4-layer silicon detector
 - MAPS 2 innermost layers, Strip detectors 2 outer layers
- Time Projection Chamber (TPC) and Time Of Flight (TOF)
 - Particle momentum (TPC) and identification (TPC and TOF)

PRL 118 212301 (2017)

D[±] **MEASUREMENTS WITH THE HFT**

- The data used in this analysis are from 2016 for Au+Au collisions at $\sqrt{s_{NN}}=200~\text{GeV}$
- Total of ca. 1.3B good minimum bias events after event selection
- The HFT allows direct topological reconstruction of D^\pm mesons through their hadronic decay
 - $D^+ \to K^- \pi^+ \pi^+$ $c\tau = (311.8 \pm 2.1) \ \mu m$

 $BR = (8.98 \pm 0.28) \%^*$

*Value of *BR* is updated regularly: 2014: $BR = (9.13 \pm 0.19) \%$ 2016: $BR = (9.46 \pm 0.24) \%$ **2018: BR = (8.98 \pm 0.28) \%** 2019: $BR = (9.38 \pm 0.16) \%$

All values taken from PDG overview from given year.

JHEP 1510 (2015) 142

- Event selection cuts
 - Position of primary vertex along the beam axis
- Track selection cuts
 - *p*_T suppresses combinatorial background from low-*p*_T particles
 - $|\eta| < 1$ detector acceptance
 - Minimum number of hits in the TPC for each track – good track quality
 - Minimum number of hits in the HFT
- Particle identification (PID)
 - TPC energy loss of charged particles in the TPC gas
 - TOF velocity of the charged particles
- Topological cuts
 - Possible only with use of the HFT
 - Constrain topology of the reconstructed secondary vertex
 - Suppress combinatorial background

- Event selection cuts
 - Position of primary vertex along the beam axis
- Track selection cuts
 - *p*_T suppresses combinatorial background from low-*p*_T particles
 - $|\eta| < 1$ detector acceptance
 - Minimum number of hits in the TPC for each track – good track quality
 - Minimum number of hits in the HFT
- Particle identification (PID)
 - TPC energy loss of charged particles in the TPC gas
 - TOF velocity of the charged particles
- Topological cuts
 - Possible only with use of the HFT
 - Constrain topology of the reconstructed secondary vertex
 - Suppress combinatorial background

Jan Vanek: Open-charm meson production at STAR

- Event selection cuts
 - Position of primary vertex along the beam axis
- Track selection cuts
 - *p*_T suppresses combinatorial background from low-*p*_T particles
 - $|\eta| < 1$ detector acceptance
 - Minimum number of hits in the TPC for each track – good track quality
 - Minimum number of hits in the HFT
- Particle identification (PID)
 - TPC energy loss of charged particles in the TPC gas
 - TOF velocity of the charged particles
- Topological cuts
 - Possible only with use of the HFT
 - Constrain topology of the reconstructed secondary vertex
 - Suppress combinatorial background

- $^{\circ}~$ Example of analysis cuts for $D^{\pm}~$ reconstruction using the HFT
- Event selection cuts
 - Position of primary vertex along the beam axis
- Track selection cuts
 - *p*_T suppresses combinatorial background from low-*p*_T particles
 - nHitsFit large number of TPC hits used for track reconstruction to ensure good track quality
 - Hit in at least three layers of the HFT
- PID: HFT+TPC+(TOF)
 - Hybrid TOF = use TOF only for tracks with valid TOF information
- Topological cuts
 - Possible only with use of the HFT
 - Constrain topology of the reconstructed secondary vertex
 - Suppress combinatorial background
 - Optimization using the TMVA

Event selection cuts	$ V_z < 6 \text{ cm}$	
	$ V_{\rm z} - V_{\rm z(VPD)} < 3 {\rm cm}$	
Track selection cuts	$p_{\rm T}$ > 500 MeV/c	
	η < 1	
	nHitsFit > 20	
	nHitsFit/nHitsMax > 0.52	
	HFT track = PXL1+PXL2+(IST or SSD)	
PID cuts	TPC	$ n\sigma_{\pi} < 3$
		$ n\sigma_{\rm K} < 2$
	Hybrid TOF	$ 1/\beta - 1/\beta_{\pi} < 0.03$
		$ 1/\beta - 1/\beta_{\rm K} < 0.03$
Topological cuts (no optimization)	$DCA_{pair} < 80 \ \mu m$	
	30 μ m < $L_{D\pm}$ < 2000 μ m	
	$\cos(\vartheta) > 0.998$	
	$\Delta_{\rm max}$ < 200 $\mu { m m}$	
	$DCA_{\pi-PV} > 100 \ \mu m$	
	$DCA_{K-PV} > 80 \ \mu m$	

SELECTION CRITERIA OPTIMIZATION

Rectangular cuts optimization using TMVA

Signal sample

- From data-driven fast-simulator
- 160M simulated D^\pm decays with same pre-cuts as used to produce candidates tree

Background sample

- From data
- Wrong-sign Kππ triplets

Number of signal events (before TMVA cuts)

Estimated using measured D⁰ spectrum in Run14

$$(Y_{\rm raw})_{D^{\pm}} = \left(\frac{{\rm d}^2 N}{2\pi p_{\rm T} {\rm d} p_{\rm T} {\rm d} y}\right)_{D^0} 2 \pi N_{\rm evt} B R_{D^{\pm}} p_{\rm T} \Delta p_{\rm T} \Delta y \, \varepsilon(p_{\rm T}) \frac{f_{c \to D^{\pm}}}{f_{c \to D^0}}$$

Number of background events (before TMVA cuts)

From data

TRAINING PROCEDURE

- Cuts optimization (CutsSA)
- Set the TMVA optimized variables
 - Look for max/min value
- TMVA goes from signal efficiency $\varepsilon_s = 0$ to $\varepsilon_s = 1$
- For each ε_{s} minimizes background efficiency ε_{B}
- The optimal set of cuts at maximum significance:

$$\Sigma = \frac{S}{\sqrt{S+B}} = \frac{\varepsilon_S N_S}{\sqrt{\varepsilon_S N_S + \varepsilon_B N_B}}$$

where $N_{g}\left(N_{B}\right)$ is number of signal (background) events before optimization

- N_s estimated from D⁰ Run14 invariant spectrum
 - Calculate expected D[±] raw yield from D⁰ invariant yield
- N_B estimated from D[±] candidates tree
 - Number of background events under the D[±] mass peak

- Centrality 0-10%
- $3 < p_{\rm T} < 4 \, {\rm GeV}/c$
- (top) Signal (blue) and background (red) distributions used for the training

- (bottom) Signal eff. (blue), background eff. (red) and significance (green) all vs. signal efficiency in the same bin
- The significance plot corresponds to expected 703 signal and 41 448 background events

TRAINING RESULT – RAW YIELD

5000 This thesis Improvement of raw yield 4800 2016 Au+Au √s_{NN} = 200 GeV extraction 4600 Centrality 0-10% 4400 $2.0 < p_{-} < 2.5 \text{ GeV/c}$ 4200 No optimization ()4000 Correct-sign 3800 Significantly reduced background 3600 Wrong-sign 3400 for $p_{\rm T}$ < 3 GeV/*c* 1.8 1.85 1.95 1.751.9 2 2.052.1 $M_{inv}^{K\pi\pi}$ (GeV/ c^2) 220 Raw yield significance This thesis Correct-sign 20(improvement with TMVA cuts 180 2016 Au+Au $\sqrt{s_{_{\rm NN}}}$ = 200 GeV Wrong-sign 160 Centrality 0-10% Counts Improvement of significance up to 140 TMVA optimized 2.0 < p_ < 2.5 GeV/c 120 by factor of 3 100 80 TMVA is most efficient in low p_{T} 60 40 No significant improvement in high 1.85 1.751.8 1.9 1.95 2 2.052.1 $p_{\rm T}$ due to very little background $M_{inv}^{K\pi\pi}$ (GeV/ c^2)

12.04.2019

TRAINING RESULT - YIELD SIGNIFICANCE

RAW YIELD EXTRACTION

- D^{\pm} signal is extracted from KITT invariant mass $M_{inv}^{K\pi\pi}$ spectrum
- **Background:** wrong-sign spectrum scaled using regions outside the mass peak
- The wrong-sign spectrum is subtracted from the correctsign spectrum
- The spectrum after subtraction is fitted with Gaussian function by χ^2 fit
- The raw yield Y_{raw} is calculated by the bin-counting method in $\pm 3\sigma$ region
- Only raw yields with significance > 3 accepted for further analysis

Jan Vanek: Open-charm meson production at STAR

DETECTOR AND ACCEPTANCE CORRECTIONS

- HFT+TPC efficiency determined by data-driven fast-simulator with inputs from data and TPC embedding
 - D[±] are decayed by EvtGen
 - Detector efficiency and resolution effects are applied to the D[±] decayed daughters:
 - HFT matching efficiency (data)
 - DCA resolution (data)
 - Primary vertex position along beam axis (data)
 - TPC momentum resolution (embedding)
 - TPC tracking efficiency (embedding)
 - Efficiency $\varepsilon(p_{\rm T})$ obtained from fraction of simulated
 - D^{\pm} passing the analysis cuts
- PID efficiency of TPC and TOF
 - Enriched K sample at low $p_{\rm T}$ from data using strict TOF or TPC PID cuts
 - Pure π sample obtained by reconstruction of K^0_s

24.06.201

D[±] INVARIANT SPECTRUM

Invariant yield is calculated according to:

$$\frac{\mathrm{d}^2 N}{2\pi p_{\mathrm{T}} \,\mathrm{d} p_{\mathrm{T}} \mathrm{d} y} = \frac{Y_{\mathrm{raw}}}{2 \pi N_{\mathrm{evt}} BR \, p_{\mathrm{T}} \Delta p_{\mathrm{T}} \Delta y \, \varepsilon(p_{\mathrm{T}})}$$

- Y_{raw} = raw yield, N_{evt} = number of events, BR = branching ratio, $\varepsilon(p_T)$ = total D[±] reconstruction efficiency
- Collision centrality classes: 0-10%, 10-40%, 40-80%, 0-80%
 - Determined from charged track multiplicity in TPC and Glauber model simulation

D[±] NUCLEAR MODIFICATION FACTOR

Nuclear modification factor:

 $R_{\rm AA}(p_{\rm T}) = \frac{{\rm d}N_{\rm D}^{\rm AA}/{\rm d}p_{\rm T}}{\langle N_{\rm coll}\rangle\,{\rm d}N_{\rm D}^{\rm pp}/{\rm d}p_{\rm T}}$

- Reference: combined D⁰ and D* measurement in 200 GeV p+p collisions using 2009 data
- High-p_T D[±] and D⁰ suppressed in central Au+Au collisions
 - Strong interactions between charm quarks and the medium
- Similar level of suppression for D^\pm and D^0
- This figure official STAR preliminary, first presented at QM2018 in Venice

STAR D^0 and D^* p+p reference: Phys. Rev. D 86 072013

CONCLUSION

- STAR has extensively studied production of open-charm mesons in heavyion collisions utilizing the Heavy-Flavor Tracker
- The HFT allows direct topological reconstruction of hadronic decays of open-charm mesons
- The topological selection criteria are optimized using the TMVA
 - Improvement of significance of D^{\pm} mass peak for $p_{\rm T}$ < 4 GeV/c
 - Improvement of D[±] raw yield extraction
- The D[±] nuclear modification factor is consistent with that of D⁰
 - D⁰ and D[±] mesons are significantly suppressed at high-p_T in central Au+Au collisions
 - The c quarks interact strongly with the QGP

THANK YOU FOR ATTENTION

Acknowledgement: This presentation is supported by OPVVV grant CZ.02.1.01/0.0/0.0/16_013/0001569 of the Ministry of Education, Youth and Sports of the Czech Republic

11.06.2019 2

Jan Vanek: Open-charm production at STAR

BACKUP

Jan Vanek: Open-charm meson production at STAR

24.06.2019

SYSTEMATIC UNCERTAINTIES

- Raw yield vs. fit function
 - Bin counting vs. fit
- Cuts variation
 - Manual for rectangular cuts
 - ±30% in signal efficiency in TMVA
 - Calculate invariant yield with varied cuts
 - Compare to analysis cuts
 - Take larger value (tight vs. loose cuts) as a sys. err.
 - Fit all sys. err. points with a linear function take this as sys err.
- Tracking efficiency systematic error
 - Variate nHitsFit from 20 to 25
 - In data and in embedding
 - Double ratio vs. p_T
 - Used pions from embedding as a reference
 - Same procedure as used for D⁰

24.06.2019

RAW YIELD EXTRACTION - NEW

- D^{\pm} signal is extracted from $K\pi\pi$ invariant mass $M_{inv}^{K\pi\pi}$ spectrum
- Background: wrong-sign spectrum scaled using regions outside the mass peak
- The wrong-sign spectrum is fitted by linear function
- The correct-sign spectrum is fitted by Gauss+linear using binned likelihood method
- The raw yield Y_{raw} is calculated from parameters of the fit in $\pm 3\sigma$ region
- This method will be used for final results – in progress
- Only raw yields with significance > 3 accepted for further analysis

