Developments in Tracking with STAR's Heavy Flavor Tracker

G. VAN BUREN - BNL FOR THE STAR COLLABORATION VERTEX2015 WORKSHOP JUNE 2, 2015

Outline

- Introduction: STAR's Heavy Flavor Tracker (HFT) Program
- Alignment calibrations
 - HFT internal
 - HFT-to-TPC (global)
- Tracking
 - Material accounting
 - Using HFT hits
- Conclusions
 - Early results
 - Summary

Introduction

G. VAN BUREN - BNL - TRACKING WITH STAR HFT

Physics

 Combinatorial D⁰ reconstruction without topology is possible, but with low signal-to-noise, physics measurements beyond cross sections are challenging at best

 Goal: topologically identify charm decays with sufficient signalto-noise to clearly determine heavy flavor behavior in the medium produced in high energy heavy ion collisions

Mid-rapidity tracking

- Quick STAR overview:
 - 0.5 T solenoidal B field
 - "TPC": readout at radii of ~60-190 cm, integrates ~400 collider bunch crossings

- "SSD": fast double-sided (stereoscopic) silicon strips at radii of ~22 cm (not presented in this talk)
- "IST": fast single-sided silicon pads at radii of ~I4 cm
- "PXL": 20.7 x 20.7 micron Monolithic Active Pixel Sensors (MAPS) at radii of ~2.8 cm and ~8 cm, integrates for ~1750 collider bunch crossings

STAR structures

• A less typical way to show geometries: inner-STAR via conversions tomography

Alignment Calibrations

Primary contributors: X. Dong[†], Y. Fisyak^β, M. Lomnitz[∫], M. Mustafa[†], A. Schmah[†], H. Qiu[†], G.Van Buren^β

^β Brookhaven National Laboratory
[†] Lawrence Berkeley National Laboratory
[∫] Kent State University

G. VAN BUREN - BNL - TRACKING WITH STAR HFT

Survey

- Survey serves as the starting point
- Visual & stylus scan of the PXL sensor surfaces on-sector
 - Deviations from planarity (of order few tens of microns a little larger than hit reconstruction errors, though projectively a little smaller) fit with thin plate spline

• PXL sensor-to-ladder and ladder-to-sector alignment fixed from survey

HFT internal alignment

- Zero magnetic field cosmics
 - Straight-line tracklets formed with HFT hits alone which cross through ~middle of HFT

HFT internal alignment

- Zero magnetic field cosmics
 - PXL internal alignment
 - Coarse alignment: PXL-half-to-PXL-half
 - Fine scale: each sector aligned through residual minimization with multiple sectors on opposite side, using a single sector as the primary reference
 - Achieved hit errors: ~10-20 microns for inner PXL and ~15-30 microns for outer PXL
 - Whole-IST aligned to whole-PXL
 - Attempt to align individual IST ladders showed no notable improvement over survey: retained survey parameters
- Data samples taken at beginning, middle, and end of our Run year showed consistency: alignment was stable

Note: plots show first sector alignment attempt; subsequent attempts improved residuals further

 $\sigma = 46.3 \,\mu m$

-0.2

0

(cm)

 $\Delta \; {\rm y}_{\rm global}$

counts

500

0.2

HFT-to-TPC: global alignment

- Field-on cosmics (both B polarities examined)
 - TPC precision is significantly better with field on
 - Use HFT residuals to (high pT) TPC track projections
- Interdependence between HFT-to-TPC rotation, internal TPC super-sector rotations, and static TPC distortions found to be important
 - Degeneracies remained when attempting to self-calibrate distortions and alignment in TPC
 - HFT-to-TPC alignment exposed TPC issues that were found to improve through iteration between distortion and alignment calibrations
 - Last ambiguities of TPC super-sector alignment determined by HFT itself
- HFT also provided checks/improvement on TPC T₀ and drift velocities

Mean PXL residuals in global x vs.TPC sector of track

Primary contributors: L. Didenko^β, L. Hajdu^β, J. Lauret^β, V. Perevotzchikov^β, D. Smirnov^β, H. Qiu[†], G.Van Buren^β, F.Videbaek^β, J.Webb^β

^B Brookhaven National Laboratory [†] Lawrence Berkeley National Laboratory

G. VAN BUREN - BNL - TRACKING WITH STAR HFT

Tracking in STAR

- STAR track reconstruction for final physics has historically focused on transverse physics, using simplified versions of the detector geometries to attain reasonably quick reconstruction times given preciously finite CPU resources
 - Shortcomings in accuracy were sufficient for ~I millimeter scale precision in midrapidity tracking; forward tracking not possible
 - Work needed to advance performance to the requisite sub-hundred microns scale without sacrificing (much) speed
- Effort begun a few years ago to revamp the tracking as part of a larger project extending into simulations J. Phys. Conf. Ser. **396** (2012) 022058
 - Goals: unify geometries in simulation and reconstruction (single abstract interface to GEANT and ROOT/TGeo); standard energy loss accounting (GEANT propagator); agnostic to track orientation (e.g. forward detectors, far-from-orthogonality)
 - Concerns: significant QA work to make reconstruction match simulation, and perform at least as well as old tracking; speed (roughly ~twice as slow on just TPC alone)
- Priority given to pushing historical tracker: fewer unknowns with an established foundation, clearer comparability with past results

Geometry QA

- TGeoChecker valuable to find issues with GEANT (TGeo) volumes (e.g. undeclared overlaps and illegal extrusions)
- Tool developed in-house to compare (in simulation) energy losses in tracking in physical space with GEANT proved useful in finding and isolating details of discrepancies

Performance QA

- Automated nightly tests of development libraries on old datasets
- Reconstruction time monitoring
- Extended in-house tools for comparing reconstructed track parameters (e.g. curvature [q/p_T], eta), projections (e.g. distance of closest approach [DCA] to primary vertex), and efficiencies differentially with respect to numerous variables (e.g. p_T, eta, phi, # of fit points)

Geometry approximations

- GEANT geometry is rich (as it should be), with many thousands of intricate little, oddly-oriented and -shaped volumes and sub-volumes
 - Vast majority are support structures not unimportant!
- Only simple geometries implemented in tracker:
 - Planes (with depth, e.g. box, no z-sloping allowed) & cylinders / cylindrical sections (centered at (0,0))
 - Anything else would require significant re-writes
 - Only limited misalignments of volumes allowed in this scheme
- Options for translation from simulation geometry (all were used):
 - Exact copy (e.g. solid simple tube, like the beampipe)
 - Automatically averaged mother volumes: material mass spread evenly through an approximated simple volume; internal structures and variation lost
 - User-specified substitute using simple geometries
- SSD: need geometry well-represented *now* even if not yet using hits

Intersecting materials

- Track projection error consideration not helpful: introduces more false positive intersections than true ones
- Limitation of old tracker: volume intersection decided only by whether a track crosses a volume's mid-section, i.e. the transverse area <u>at</u> the radius of the volume's center
 - Too "all-or-nothing" for radially oriented structures: some tracks see all (too much) material, while others see no material
 - Solution: automatic volume segmentation for averaged volumes into multiple subvolumes along radial direction

Intersecting materials

- Track projection error consideration not helpful: introduces more false positive intersections than true ones
- Limitation of old tracker: volume intersection decided only by whether a track crosses a volume's mid-section, i.e. the transverse area <u>at</u> the radius of the volume's center
 - Too "all-or-nothing" for radially oriented structures: some tracks see all (too much) material, while others see no material
 - Solution: automatic volume segmentation for averaged volumes into multiple subvolumes along radial direction

Intersecting materials

• Limitation... (continued)

Office

STAR

- Non-ideal alignment mandates a finite tolerance for defining radial layers
 - Not perfect: out-of-radial-order misalignment can make track propagate backwards
- Overlapping tilted layers (ladders) must be split into two, such that a track can see them as two different radial layers (and find two hits!)

 Prioritize active volumes for any ambiguity at any given radial layer to give best chance of finding a hit

Found several small bugs along the way (dust under the old rugs)

Hits: improving the signal

- Hits, while associated with volumes, must be allowed to deviate from the alignment constraints of the tracker (e.g. hit can be "off" the volume) to represent true misalignments & hit positions
 - Tracker already allowed this for TPC distortions & misalignments
- Allowed re-use of HFT detector hits
 - Does more good than harm, despite low HFT occupancy [maximum under 0.1% for inner PXL], more an issue of TPC pile-up; physics emphasis is on tracks with HFT hits
- Requirement of having 3+ HFT hits if at all
 - Missing HFT layers found to be a strong indicator of picking up wrong HFT hits
- Still see some potential for further improving efficiency of picking up HFT hits

Conclusions

G. VAN BUREN - BNL - TRACKING WITH STAR HFT

Physics: D⁰ signal

 Lots more to come: ~1.2B AuAu 200 GeV and ~1.6B pp 200 GeV events on tape! ...and more data arriving...

Summary

- Calibration delivered
 - Excellent internal alignment of HFT subsystems achieved
 - Global alignment between HFT and TPC achieved, with constructive improvement of TPC internal alignment
- Tracking delivered
 - Reasonable reconstruction time using tracker with simplified geometry (inclusion of HFT materials adds only ~10% net to whole reconstruction chain)
 - Energy loss in STAR materials sufficiently well-accounted
 - Some optimization of HFT hit usage
- Physics...in progress, and looking good for studying behavior of heavy flavor produced in high energy nuclear collisions!

