20th Particles & Nuclei International Conference

25-29 August 2014 Hamburg, Germany

Exploring Gluon and Antiquark Polarization in the Proton with **STAR**

Carl Gagliardi

Texas A&M University

Outline

- Introduction
- Jets and gluon polarization
- W's and antiquark polarization

Measuring the gluon polarization distribution is a primary goal of the RHIC spin program

Why is $\Delta\Sigma$ so small?

$$\Delta \Sigma = \int_{0}^{1} \left(\Delta u + \Delta \overline{u} + \Delta d + \Delta \overline{d} + \Delta s + \Delta \overline{s} \right) dx$$

- Polarized inclusive DIS data measure $\Delta u + \Delta \bar{u}$ and $\Delta d + \Delta \bar{d}$
- Polarized semi-inclusive DIS data provide flavor separation, but uncertainties remain large

- FNAL E866 found surprising structure in the unpolarized antiquark distributions
- Might the polarized antiquark distributions also contain surprises?
- Measuring the antiquark polarization distributions is another primary goal of the RHIC spin program

Exploring gluon polarization at RHIC

 Δf : polarized parton distribution functions

For most RHIC kinematics, gg and qg dominate, making A_{LL} for jets sensitive to gluon polarization.

Exploring antiquark polarization at RHIC

$$u + \overline{d} \rightarrow W^+ \rightarrow e^+ + v$$

$$\overline{u} + d \to W^- \to e^- + \overline{\nu}$$

- W's only couple to left-handed quarks and right-handed antiquarks
 - Perfect spin separation!
- Detect W's through e⁻ and e⁺ decay channels

The parity-violating single-spin asymmetry, A_L, for W production provides direct information about antiquark polarization

$$A_L^{W^-} \propto -\Delta d(x_1)\overline{u}(x_2) + \Delta \overline{u}(x_1)d(x_2) \qquad A_L^{W^+} \propto -\Delta u(x_1)\overline{d}(x_2) + \Delta \overline{d}(x_1)u(x_2)$$

STAR detector side view

- High precision tracking with the TPC
- Electromagnetic calorimetry with the BEMC and EEMC (and FMS)
- Additional detectors (BBC, VPD, ZDC) for relative luminosity and local polarimetry

Jet reconstruction in STAR

Jet cross section from 2006 data

- Good agreement between data and simulation
- Good agreement with NLO pQCD calculation after hadronization and underlying event correction is applied
- Jet production is well understood at RHIC energies

p_T[GeV]

STAR inclusive jet A_{LL} from 2006 data

• **STAR** inclusive jet A_{LL} from 2006 excluded those scenarios that had a large gluon polarization within the accessible *x* region

DSSV – first global analysis with polarized jets

de Florian et al., PRL 101, 072001

- The first global NLO analysis to include inclusive DIS, SIDIS, and RHIC pp data on an equal footing
- Found relatively small gluon polarization within the region 0.05 < x < 0.2 that was sampled by the 2006 data

Improvements for 2009

- 2009 jet patch trigger upgrades
 - Overlapping jet patches and lower E_T threshold improve efficiency and reduce trigger bias
 - Net increase of 37% in jet acceptance
 - Remove beam-beam counter trigger requirement
 - Trigger more efficiently at high jet $p_{\rm T}$
 - Measure non-collision background
- Increased trigger rate and reduced thresholds enabled by DAQ1000
- Sampled ~ 4 times the figure-of-merit relative to 2006
- Nearly **20-fold increase** in event statistics
- Improvements in jet reconstruction
 - Subtract 100% of track momentum from struck tower energy (2009) instead of MIP (2006)
 - Overall jet energy resolution improved from 23% to 18%
 - Switch from mid-point cone to anti- k_T

- 2009 **STAR** inclusive jet A₁₁ measurements are a factor of 3 (high- p_T) to >4 (low- p_T) more precise than 2006
- A_{μ} falls in the middle among several recent polarized PDF fit predictions
- A_{μ} is somewhat larger than predictions from the 2008 **DSSV** fit
 - Points toward **positive** Δg in the accessible x region

Carl Gagliardi – PANIC2014 – Exploring Gluon and Antiquark Polarization with STAR

BB and **LSS** model uncertainties

- Results are well within the quoted BB10 uncertainties
 - Can reduce inclusive jet χ^2 from 89 to 18 while increasing the DIS data χ^2 by less than 0.03% (0.36 in 1537, "BB10r")
- Results fall outside the quoted LSS10 uncertainties for $p_T <~ 12 \text{ GeV/c}$ - Very strong preference for LSS10p ($\chi^2=22.5$) over LSS10 ($\chi^2=57$)

Two new polarized distribution fits

- Both DSSV and NNPDF have released new polarized PDF fits
- Both find 2009 STAR jet A_{LL} results provide significantly tighter constraints on gluon polarization than previous measurements
- Both find evidence for positive gluon polarization in the region x > 0.05
 - DSSV: $0.20_{-0.07}^{+0.06}$ at 90% c.l. for 0.05 < x
 - NNPDF: 0.23 ± 0.07 for 0.05 < *x* < 0.5

Higher precision coming soon

- During 2012 **STAR** measured inclusive jet A_{LL} in **510 GeV collisions**
 - Higher beam energy provides sensitivity to smaller x_g
- **STAR** also anticipates **significant future reductions** in the uncertainties for **200 GeV collisions** relative to the 2009 results
 - Hope to record triple the existing 200 GeV data during the 2015 RHIC run

Beyond inclusive A_{LL} measurements

- Inclusive A_{LL} measurements at fixed p_T average over a **broad x range**.
- Can hide considerable structure if $\Delta g(x)$ has a node
- Correlation measurements can constrain the shape of $\Delta g(x)$

2009 di-jet cross section in 200 GeV pp

- Di-jets permit event-by-event calculations of x_1 and x_2 at LO
- Di-jet cross section is well-described by NLO pQCD with corrections for hadronization and underlying event
- Will have A_{LL} for 2009 di-jets at 200 GeV soon
- Also analyzing A_{LL} for di-jets at 510 GeV using data from 2013

- A₁ for W⁺ is consistent with theoretical predictions constrained by polarized **SIDIS** data
- A_1 for W⁻ is larger than the predictions for $\eta_e < 0$
 - This region is particularly sensitive to $\Delta \bar{u}$
- Preference for a **positive** Δu in the range 0.05 < *x* < 0.2

STAR W A_L in recent polarized PDF fits

- DSSV++ is a preliminary fit that included a preliminary version of the STAR 2012 W A_L results
- NNPDFpol1.1 uses the STAR W asymmetries (A_L and A_{LL}) to constrain the antiquark polarizations
- Both find indication of a positive $\Delta \bar{u}$ in the vicinity of $x \sim 0.15$

Anticipated precision in the near future

- STAR recorded ~4 times as much W asymmetry data during the 2013 RHIC run than were included in the recent analysis
- Will also extended kinematic coverage to larger $|\eta|$ with the FGT
- Look for new A_L results soon

Conclusions

- STAR 2009 inclusive jet A_{LL} results provide the first experimental evidence for positive gluon polarization in the RHIC range
- **STAR 2011+12 W A**_L **results** provide new **constraints** on **antiquark polarizations**, including a preference for a positive $\Delta \overline{u}$
- Look for several more results in the near future
 - First measurements:
 - Di-jet A_{LL} at 200 and 510 GeV (2009&13 data)
 - Inclusive jet A_{LL} at 510 GeV (2012 data)
 - Improved precision for:
 - W A_L (2013 data)
 - Inclusive jet A_{LL} at 200 GeV (2015 data)

Stay tuned!