

TAR Science for the **Coming Decade**

Carl Gagliardi Texas A&M University

Outline

- Eight key questions
- STAR now to mid-decade
- STAR in the second half of the decade

1

• eSTAR at eRHIC phase 1

RHIC: eight key unanswered questions

Hot QCD Matter

- 1: Properties of the sQGP
- 2: Mechanism of energy loss: weak or strong coupling?
- 3: Is there a critical point, and if so, where?
- 4: Novel symmetry properties
- 5: Exotic particles

STAR Science for the Decade – QM2011 – Carl Gagliardi

Partonic structure

6: Spin structure of the nucleon7: How to go beyond leading twist and collinear factorization?

8: What are the properties of cold nuclear matter?

How to answer these questions

- Hot QCD matter: high luminosity RHIC II (fb⁻¹ equivalent)
 - Heavy Flavor Tracker (HFT): precision charm and bottom
 - Muon Telescope Detector (MTD): $e+\mu$ and $\mu+\mu$ at mid-rapidity
 - Trigger and DAQ upgrades to make full use of luminosity
- Phase structure of QCD matter: energy scan
- Cold QCD matter: high precision p+A, followed by e+A
 - Major upgrade of capabilities in forward direction
 - Devote the time to explore p+A, not d+A
 - Existing mid-rapidity detectors well suited for portions of the initial e+A program

Near future: where is the QCD critical point?

- A landmark on the QCD phase diagram
- Narrowing down the region of interest during Runs 11/12
- Future: need detailed study of the key region
 - Finer energy steps with higher statistics

Mid-rapidity STAR: now to mid-decade

A beautiful detector gets even better!

Properties of sQGP: charm

- Does charm flow hydrodynamically?
 - Heavy Flavor Tracker: unique access to low- p_T fully reconstructed charm
- Are charmed hadrons produced via coalescence?
 - Heavy Flavor Tracker: unique access to charm baryons
 - Would force a significant reinterpretation of non-photonic electron R_{AA}
- Muon Telescope Detector: precision measurements of J/ψ flow

Properties of sQGP: Upsilon

W

1

SUPPRESSION

RHIC

5

U

3

What quarkonia states dissociate at RHIC energy densities?

What is the energy density?

- Muon Telescope Detector: dissociation of Υ, separated by state
 - At RHIC: small contribution from coalescence, so interpretation clean
 - No contribution of Bremsstrahlung tails, unlike electron channel

Mechanism of partonic energy loss

- Is the mechanism predominantly radiative or collisional?
 - Detailed, fully kinematically constrained measurements via gammahadron and full jet reconstruction
 - Pathlength dependence, especially with U+U
- Does the mechanism depend on the parton type?
 - Gluons: particle identification, especially baryons
 - Light quarks: gamma-hadron
 - Heavy quarks: Heavy Flavor Tracker and Muon Telescope Detector
- Does the energy loss depend on the parton energy and/or velocity?
 - High precision jet measurements up to 50 GeV
 - Vary velocity by comparing light quarks, charm, and bottom
- Example of complementary to LHC
 - RHIC: primarily light quarks for 30 to 50 GeV jets
 - LHC: gluons

Cold QCD matter – the initial state at RHIC

- RHIC may provide unique access to the onset of saturation
- Future questions for p+A
 - What is the gluon density in the (x, Q^2) range relevant at RHIC?
 - What role does saturation of gluon densities play at RHIC?
 - What is Q_s at RHIC, and how does it scale with A and x?
 - What is the impact parameter dependence of the gluon density?

Some planned p+A measurements

- Nuclear modifications of the gluon PDF
 - Correlated charm production
- Gluon saturation
 - Forward-forward correlations (extension of existing π^0 - π^0)
 - h-h• $\pi^{0}-\pi^{0}$ Easier to measure
 - Π⁰-Π⁰
 - γh • $\gamma - \pi^0$ Easier to interpret
 - Drell-Yan
 - Able to reconstruct x_1 , x_2 , Q^2 event-by-event
 - Can be compared directly to nuclear DIS
 - True 2 \rightarrow 1 provides model-independent access to $x_2 < 0.001$
 - Λ polarization
 - Baryon production at large x_F
- What more might we learn by scattering *polarized* protons off nuclei?
- Must look forward to perform these measurements

STAR forward instrumentation upgrade

- Forward instrumentation optimized for **p+A** and **transverse spin** physics
 - Charged-particle tracking
 - e/h and γ/π^0 discrimination
 - Baryon/meson separation

$\textbf{STAR} \rightarrow \textbf{eSTAR}$

Optimizing **STAR** for e+A collisions from 5+50 to 5+130 GeV

- Inclusive scattering over the entire deep-inelastic region
 - Key measurements
 - F_L in e+A direct measurement of nuclear gluon densities
 - F_2^A/F_2^d parton distributions in nuclei (including gluons via Q^2 evolution)
- Semi-inclusive deep-inelastic scattering over a broad (x, Q^2) domain
 - Key measurements
 - Flavor-separated parton distributions in nuclei, including strangeness
 - Parton energy loss in cold nuclear matter

• What's needed?

eRHIC phase 1: e+A kinematic range

- "Forward" (-2.5 <~ η < -1) electron acceptance essential to span deep-inelastic (DIS) regime
- Both backward and forward hadron coverage valuable for semiinclusive deep-inelastic (SIDIS) scattering

Parton energy loss in cold QCD matter

- Complementary tool to investigate partonic energy loss
- HERMES: hadrons can form partially inside the medium
 - Mixture of hadronic absorption and partonic energy loss
- eRHIC: light quark hadrons form well outside the medium
- Heavy quarks: unexplored to date. Low $\beta \rightarrow$ short formation time

$\textbf{STAR} \rightarrow \textbf{eSTAR}$

Optimizing **STAR** for e+A collisions from 5+50 to 5+130 GeV

- Inclusive scattering over the entire deep-inelastic region
 - Key measurements
 - F_L in e+A direct measurement of nuclear gluon densities
 - F_2^A/F_2^d parton distributions in nuclei (including gluons via Q^2 evolution)
 - Need electron detection, ID, and triggering over -2.5 <~ η < -1
 - Combined mini-TPC/threshold gas Cherekov detector
- Semi-inclusive deep-inelastic scattering over a broad (x, Q^2) domain
 - Key measurements
 - Flavor-separated parton distributions in nuclei, including strangeness
 - Parton energy loss in cold nuclear matter
 - Need hadron detection and identification beyond the TPC/EEMC
 - Extend TOF to cover $-2 < \eta < -1$
 - GEM disks (from forward instrumentation upgrade) plus hadronic calorimetry in the region 2 < η < 3

Evolving from **STAR** into **eSTAR**

Conclusions

- The STAR Collaboration has identified compelling physics opportunities for the coming decade
 - Eight key questions
- The STAR Collaboration has identified the detector upgrades required to address these opportunities
- The path forward:
 - Early in the decade: physics with low mass in the central region
 - Mid decade: physics of the HFT and MTD
 - Later in the decade: physics in the forward region
 - End of the decade: early phase of eRHIC
- STAR has a vision for the future that will produce important new results well into the eRHIC era

Key unanswered questions

- What is the nature of QCD matter at the extremes?
 - What are the properties of the strongly-coupled system produced at RHIC, and how does it thermalize?
 - Are the interactions of energetic partons with QCD matter characterized by weak or strong coupling? What is the detailed mechanism for partonic energy loss?
 - Where is the QCD critical point and the associated first-order phase transition line?
 - Can we strengthen current evidence for novel symmetries in QCD matter and open new avenues?
 - What other exotic particles are produced at RHIC?
- What is the partonic structure of nucleons and nuclei?
 - What is the partonic spin structure of the proton?
 - How do we go beyond leading twist and collinear factorization in perturbative QCD?
 - What is the nature of the initial state in nuclear collisions?

Summary of the plan

	Near term	Mid-decade	Long term
	(Runs 11–13)	(Runs 14–16)	(Runs 17–)
Colliding systems	p+p, A+A	<i>p</i> + <i>p</i> , A+A	p+p, p+A, A+A,
			e+p, e+A
Upgrades	FGT, FHC, RP,	HFT, MTD,	Forward Instrum,
	DAQ10K, Trigger	Trigger	eSTAR, Trigger
(1) Properties of sQGP	$Y, J/\psi \rightarrow ee,$	$Y, J/\psi \rightarrow \mu\mu,$	p+A comparison
	<i>m</i> ee, <i>v</i> ₂	Charm v ₂ , R _{CP} ,	
		Charm corr,	
		Λ_{c}/D ratio,	
		µ-atoms	
(2) Mechanism of	Jets, γ-jet,	Charm,	Jets in CNM,
energy loss	NPE	Bottom	SIDIS,
			c/b in CNM
(3) QCD critical point	Fluctuations,	Focused study of	
	correlations,	critical point region	
	particle ratios		
(4) Novel symmetries	Azimuthal corr,	$e - \mu$ corr,	
	spectral function	$\mu - \mu \operatorname{corr}$	
(5) Exotic particles	Heavy anti-matter,		
	glueballs		
(6) Proton spin structure	$W A_L,$		$\Lambda D_{LL}/D_{TT},$
	jet and di-jet A_{LL} ,		polarized DIS,
	intra-jet corr,		polarized SIDIS
	$(\Lambda + \Lambda) D_{LL}/D_{TT}$		
(7) QCD beyond collinear	Forward A _N		Drell-Yan,
factorization			F-F corr,
			polarized SIDIS
(8) Properties of			Charm corr,
initial state			Drell-Yan, J/ψ ,
			F-F corr,
			A, DIS, SIDIS

Measurements listed when they first become possible

Many will continue in future periods