

Search for Chiral Magnetic Effects in High-Energy Nuclear Collisions

Gang Wang (UCLA) for STAR Collaboration

Motivation

Observable I

Formation of electric quadrupole: $v_2^{\pm} = v_2 \mp (\frac{q_e}{\overline{\rho}_e})A_{\pm}$,

where charge asymmetry is defined as $A_{\pm} = \frac{\overline{N}_{+} - \overline{N}_{-}}{\overline{N}_{+} + \overline{N}_{-}}$

Then $\pi^{-} v_2$ should have a positive slope as a function of A_{\pm} , and $\pi^{+} v_2$ should have a negative slope with the same magnitude. The integrated v_2 of π^{-} is not necessarily bigger than π^{+} : (other physics) only the A_{\pm} dependency matters for CMW testing.

Observable II

This charge separation effect needs to be beyond conventional physics background.

S. Voloshin, PRC 70 (2004) 057901, Kharzeev, PLB633:260 (2006) 4 Kharzeev, McLerran, Warringa, NPA803:227 (2008)

Observed charge asymmetry

Charge asymmetry dependency

- v₂ was measured with the Q-cumulant method.
- Clear A_{\pm} dependency
- $v_2(A_{\pm})$ slopes for π^{\pm} :
 - opposite sign
 - similar magnitude
- v_2 difference vs A^{\pm} may have a non-zero intercept: other physics?

 v_2^{\pm}

Slope vs centrality

Y. Burnier, D. E. Kharzeev, J. Liao and H-U Yee, arXiv:1208.2537v1 [hep-ph].

Similar trends between data and theoretical calculations with CMW (improved version). There is no specific beam energy input for the calculation. 8 UrQMD with no CMW can not reproduce the slopes.

Slope vs centrality (BES)

Y. Burnier, D. E. Kharzeev, J. Liao and H-U Yee, arXiv:1208.2537v1 [hep-ph].

Similar trends are observed for different beam energies, where the errors are small.⁹

Summary I

- Charge asymmetry dependecy of pion v_2 has been observed.
 - $v_2(A)$ showed opposite slopes for π^+ and π^- .
 - The slopes have similar centrality dependency from 200 GeV to 27 GeV.
- Similarity between real data and calculations with CMW
 - Similar trends of slope vs centrality
 - UrQMD (w/o CMW) showed no such effects.
- Further systematic checks
 - Weak decay contribution
 - Handle on the magnetic field B

Other physics interpretations

- Quark transportation?
- Hadronic potential?

Please also see Hongwei Ke's poster!

CME + Local Parity Violation

Beam energy scan

From 2.76 TeV to 7.7 GeV, changes start to show from the peripheral collisions. 12

Consider γ_{OS} - γ_{SS} **to be signal...**

The signal seems to be disappearing at 7.7 GeV, but the statistical errors are large.

Possible physics background

charge conservation/cluster + v₂ Pratt, Phys.Rev.C83:014913,2011

v₂ in U+U

- If $dN/d\eta$ is divided by the overlap area (S) and v_2 is divided by eccentricity, there is a split in central and mid-central collisions.
- The area and eccentricity are calculated with Glauber Monte Carlo.

Summary II

• The three-point correlation showed charge separation w.r.t RP

- (γ_{OS} γ_{SS}) has similar magnitudes from 2.76 TeV to 11.5 GeV
- Similar in Au+Au, Pb+Pb and U+U (also in Cu+Cu, not shown)
- The signal of charge separation seems to disappear when
 - the beam energy is down to ~7.7GeV
 - the magnetic field from spectators is supressed (v₂ is still sizable)

• Further studies

- Correlations between identified particles
 - pion, kaon, proton and Lambda
- Collisions of isobars?

See also Kent Riley's poster!

• U+U collisions show interesting features of v_2 , which needs further investigation and calls for interpretation...

Backup slides

Slope vs centrality

Y. Burnier, D. E. Kharzeev, J. Liao and H-U Yee, Phys. Rev. Lett. 107, 052303 (2011) and arXiv:1208.2537v1 [hep-ph].

Improvement of theoretical calculations with CMW: Simplified hard-disk (pancake) type of model -> Monte Carlo Glauber

Multi-component Coalescence (MCC) + Quark Transport

 $X_{d^T} - X_{u^T}$ vs Charge Asymmetry

22

Results with different EPs

The correlators using TPC/ZDC event planes are consistent with each other.

Dilution effect

In the quark-gluon medium, there could be multiple P-odd domains. The net effect is like a *random walk*, but one-dimensional.

What do we know about the position R_n after *n* steps? R_n follows a Gaussian distribution: mean = 0, and $rms = \sqrt{n}$

Our measurement of PV is like R_n^2 , expected to be *n*. Compared with going in one fixed direction, where $R_n^2 = n^2$, the "random-walk" measurement is diluted by a factor $\sim n \sim N_{part}^2$ ²⁴

Two particle correlation

Possible physics background

