

SEP. 27 – OCT. 2, 2009

Búzios – Rio de Janeiro – Brazil

Multi-Strange Particle Production in Relativistic Heavy Ion Collisions at $\sqrt{s_{NN}} = 62.4 GeV$

Geraldo Magela Severino Vasconcelos

(for the STAR Collaboration)

Contents

Motivation

- The STAR Experiment
 - Brief description of the experiment
 - o Data set used

Multi-Strange Particle Production Measurements

- o Transverse momentum spectra
- Results
 - Strange particle ratios
 - Strangeness enhancement
 - $\circ \Omega/\phi$ ratio
- Summary

Motivation

Strangeness Enhancement

Strangeness enhancement observed at A+A collisions compared to p+p collisions has been proposed as one of the QGP signatures.

Experimental results:

• Λ , Ξ and Ω

✓ SPS (NA57: Pb+Pb 17.3 GeV).

✓ RHIC (STAR: Au+Au 200 GeV).

✓ RHIC (STAR: Au+Au and Cu+Cu at 200 GeV and 62.4).

Motivation

Multi-Strange Particle

- $\circ \Xi$ and Ω measurements.
- \circ Less influence of net-baryon density.

• Ω and ϕ are formed by pure s quark.

• Au+Au and Cu+Cu

 \circ Allow us to understand the system size dependence.

• 62.4 GeV Data

Important connection between energy available at SPS (17.3 GeV) and top RHIC energy (200 GeV).

• RHIC beam energy scan of RHIC will cover the lower energy region.

Motivation

<u>Previous results at 200 GeV.</u>

• Hwa and Yand model can describe data for Au+Au at 200 GeV collisions for pt<4 GeV/c (linear dependence).

Prediction: $R^{th}_{\Omega/\phi}(p) \propto p$ Phys. Rev. C 75, (2007) 054904

• Cu+Cu 200 GeV follows same trend at intermediate p_t compared to Au+Au.

What is expected for 62.4 GeV?

GMSV - SQM2009 - Buzios/RJ Brazil

9/29/2009

The STAR Experiment

Data set used:

- ~7 M events from run 2004 (Au+Au 62.4 GeV).
- \bullet ~9 M events from run 2005 (Cu+Cu 62.4 GeV).

From each event:

• Charged particles (proton, pion and kaon) are identified using dE/dx.

• Λ , Ξ and Ω are reconstructed using their weak decay topology.

Cu+Cu 62.4 GeV

• Clear peak at invariant mass spectra for midrapidity (|y|<1).

Ξ^{-} and Ξ^{+} p_t Spectra at 62.4 GeV

Transverse Momentum Spectra:

- Data corrected for efficiency and detector acceptance.
- Different centrality classes were studied.

 Boltzmann function was used to extract yields and the slope parameter.

• Both systems have similar slope parameter.

Most central collision

Au+Au: (336 ± 4) MeV

Cu+Cu: (322 ± 12) MeV

 Slope parameter shows no centrality dependence.

Ω^{-} and Ω^{+} p_t Spectra at 62.4 GeV

Cu+Cu

Au+Au

Boltzmann function was used to fit spectra.

 Slope parameter has no difference between Au+Au and Cu+Cu.

Most central collision

Au+Au: (347 ± 26) MeV

Cu+Cu: (353 ± 29) MeV

✤ Follows the strange quark content hierarchy.

Other measurements have only statistical uncertainties.

Strange Particle Ratios: Au+Au 200 GeV

Anti-Baryon to Baryon Ratio vs Centrality

GMSV - SQM2009 - Buzios/RJ Brazil

- High net baryon density at lower energy.
- Ξ and Ω have less influence of net baryon density.

Strangeness Enhancement: Au+Au

13

- No results from p+p collisions at 62.4 GeV for Λ, Ξ and $\Omega.$
- Pion yield was used as reference.
- Relative yield was normalized to the most peripheral bin.

 $\Box \Lambda/\pi$ agrees with p/ π within uncertainties.

□ Multi-strangerelativeratiosshowlargerincreaseratecompared to p/π and Λ/π .

□ The enhancement rate seems to follow the hierarchy of strange quark content in both data set.

Ω/ϕ Ratio

200 GeV.and 62.4 GeV

- Cu+Cu and Au+Au follow same trend.
- For pt<4GeV/c, results show that Ω/ϕ ratio is linearly dependent of p_t .

 $R^{th}_{\Omega/\phi}(p_t) \cong Ap_t$

• For $p_t < 4$ GeV/c, 200 and 62.4 GeV show same behavior, but have different slope (slope at 200 GeV is greater than 62.4 GeV).

200 GeV: A = 0.062 ± 0.002

62.4 GeV: A = 0.041 ± 0.004

Ω/ϕ Ratio

Comparison with EPOS

□ EPOS do not describe correctly data at 62.4 GeV.

6

□ EPOS show the linear dependence, but with different slope for pt<4 GeV/c at 62.4 GeV.

> EPOS Reference: Phys. Rev. C 74 (2006), 044902

Summary

- Multi-strange baryons have been measured from Cu+Cu and Au+Au 62.4 GeV collisions.
- Looking at strange particle ratios, we observe a dependence with centrality for proton and Λ 's for 62.4 GeV, but not for Ξ . This could be due to a higher net baryon density for collisions at lower energy.
- Multi-strange particle yields relative to pions show higher increase rate with centrality than protons and Λ 's.
- Ω/ϕ ratio at 62.4 GeV/A shows same trend compared with previous results at 200 GeV/A for intermediate p_t , but with lower linear constant.

Thank you!

Acknowledgment

GMSV - SQM2009 - Buzios/RJ Brazil