

Inclusive Neutral Pion Cross Section Measurement with the STAR Endcap Electromagnetic Calorimeter

S. Gliske, for the STAR Collaboration

Argonne National Laboratory

2012 Fall Meeting of the APS Division of Nuclear Physics

Newport Beach, California October 25th, 2012

Motivation: $\Delta g(x)$ and pQCD

- The gluon helicity distribution is one contributor to the total nucleon spin.
- While initially measured via (SI)DIS, measuring A_{LL} in inclusive $pp \rightarrow \pi^0 + X$
 - Provides complimentary access, both kinematically and in relation to partonic sub-processes
 - Has significant effects on global $\Delta g(x)$ fits
 - ▶ DSSV: de Florian, et al., Phys. Rev. D 80 (2009), Phys. Rev. Lett. 101 (2008) (left plot)
 - Hirai & Kumano, arXiv:0808.0413 [hep-ph] (right plot)
- The global fits of $\delta g(x)$ are poorly constrained at x < 0.1.
- How to reach $\Delta g(x)$ at lower x?
 - Measure A_{LL} farther forward (η in 1-2), i.e. the STAR endcap electromagnetic calorimeter (EEMC)
- First step: measure $pp \rightarrow \pi^0 + X$ cross section and compare with pQCD.
- π^0 mesons are also a background to the prompt photon + jet, another channel to access $\delta g(x)$

STAR's Endcap Electromagnetic Calorimeter

- Lead/scintillator sampling EM calorimeter
- Covers $1.09 < \eta < 2$ over full azimuth
- ► 720 optically isolated projective towers ($\approx 22X_0$)
- ► 2 pre-shower, 1 post-shower layers, and an additional shower max. detector (SMD)

- Scintillating strip SMD
 - ϕ segmented into 12 sectors
 - Two active planes
 - 288 strips per plane
- Full ϕ coverage–no gaps
- Resolution of a few mm

Particle Reconstruction

- EM Particle (γ , e^{\pm} , etc.) Reconstruction Procedure
 - 1. Identify clusters in the u and v strips
 - 2. Determine which u and v clusters to associate with incident particles
 - 3. Compute energy of incident particle using the towers.
- SMD clusters are found by
 - Smoothing the histogram using the method of J. Tukey (TH1::Smooth).
 - ► Identify clusters as a strip above an energy threshold, with ±3 strips having monotonically decreasing energy.
 - Cluster position is set to energy-weighted mean position
- We expect cluster to be larger than $1 \pm 3 = 7$ strips, but
 - Expect central strip position & energy to be sufficiently correlated to cluster position & energy.
 - Correlation increased by smoothing
- SMD response in fairly clean π^0 candidate (data) event is plotted on the right.
 - Blue histograms show energy response per strip.
 - ► Inverted red triangles represent clusters, drawn at x=mean, y=10% cluster energy.
- General reconstruction difficulties include
 - Upstream material: π^0 opening angle on the same order as opening angle for $\gamma \to e^+e^-$
 - Single particle sometimes looks like two particles, and vice versa

Data/Monte Carlo Comparison

- Plots shown for $\pi^0 p_T$ in 8-9 GeV
- Pythia tune 329, "Pro-pT0"
- Agreement generally good for π⁰ p_T > 5 GeV
- ► Sampled lumi. of 8.3 pb⁻¹

Background Subtraction

► There exist a variety of backgrounds, both due to physics and reconstruction; for example,

- ▶ $\gamma \rightarrow e^+e^-$ conversions, and π^0 candidate could be γe^+ , γe^- , e^+e^- , etc.
- Reconstructing the wrong number of photons in an event
- Sufficient to use three template functions to model signal + background
 - π^0 signal, direct conversion background, all other backgrounds
- ► Template function parameters fixed by fitting functions to reconstructed Pythia Monte Carlo.
- Normalizations of the templates and an energy scale factor determined by fitting template functions to the data

$$f_T(M_{\gamma\gamma}) = \sum_{i=1}^3 w_i f_i(M_{\gamma\gamma}/\alpha)$$

Computing the Cross Section

• The unfolded number of π^0 s per p_T bin is computed as

$$N_i^{(\pi^0)} = \sum_j S_{i,j}^{-1} f_j s_j N_j^{(\text{raw})}$$

- ► *S* is the smearing matrix
- f accounts for smearing outside the p_T range
- ► *s* is the signal fraction
- ► $N^{(\text{raw})}$ is the raw number of counts in the π^0 peak window.
- The cross section is computed as

$$E\frac{d^{3}\sigma}{d\boldsymbol{p}^{3}} = \frac{1}{2\pi}\frac{1}{\Delta\eta}\frac{1}{\Delta p_{T}}\frac{1}{\langle p_{T}\rangle}\frac{1}{\epsilon}\frac{1}{\mathrm{B.R.}}\frac{N^{(\pi^{0})}}{\mathcal{L}}$$

- Physical η is in (0.8, 2.0), thus $\Delta \eta = 1.2$.
- The p_T bin width, Δp_T , varies between 1 and 4 GeV.
- The total efficiency ε is the product of the trigger and reconstruction efficiencies.
- The branching ratio for $\pi^0 \rightarrow \gamma \gamma$ is 0.98798 (PDG)

Systematics

- ► The statistical uncertainty is the Poisson uncertainty on the raw number of counts
- The following p_T dependent systematic uncertainties are included in the analysis
 - On the signal fraction
 - Uncertainty on template function parameters, energy scale and signal weight
 - Uncertainty related to choice of fit range
 - On the background subtracted number of π^0 s
 - Uncertainty related to fit residual, related to accuracy of template shapes
 - On the unfolded number of π^0 s
 - ▶ Uncertainty on the smearing matrix S and factor f (related to Monte Carlo statistical uncertainty)
 - Uncertainty related to added additional lower p_T bins
 - On the final cross section
 - Uncertainty on $\langle p_T \rangle$, assuming EEMC resolution is $\delta E/E = 0.16/\sqrt{E}$
 - Uncertainties on reconstruction and trigger efficiencies (related to Monte Carlo statistical uncertainty)
 - Overall energy scale uncertainty of 3%—dominant systematic uncertainty
- All uncertainties are propagated analytically

Predicted Cross Section Uncertainties

- Theory curve from private communication with Marco Stratmann
 - Uses CTEQ65M distribution functions and DSS fragmentation function
 - Does not include propagated uncertainty on distribution and fragmentation functions
- Points plotted at central value of theory curve, but with predicted statistical and systematic uncertainties
 - Inner horizontal lines mark statistical uncertainty (barely visible)
 - Total error bar is combined statistical and systematic uncertainty.
- Experimental uncertainties are on the order of the theoretical uncertainty
- ▶ New results will be in an unexplored phase space region.
 - Investigation underway to divide EEMC data into multiple η bins

Conclusions and Outlook

- ▶ Results will represents first $pp \rightarrow \pi^0 + X$ cross section within this η range
 - Internal discussions regarding publication schedule are ongoing.
- Additionally, the ALL analysis is equally advanced
 - Not shown today as exists preliminary version, shown at SPIN 2008
 - ► Major improvement over older results is the background subtraction procedure.
 - Ready to be included in the cross section paper.
- Transverse data also being analyzed for the $\pi^0 A_N$.
- Thus far only 200 GeV data from one year analyzed
 - Several more years of data to analyze
 - More recent years have higher integrated luminosity and less upstream material
 - Data available for both \sqrt{s} at 200 GeV and 500 GeV.
 - Just need to finalize some details regarding the simulations.
- The STAR EEMC is also sensitive to other final states, such as prompt photons and η 's
- ► The cross section result is opening the door for many STAR EEMC results to come.