

Nuclear Modification Factor of D⁰ Mesons in Au+Au Collisions at $\sqrt{s_{NN}} = 200$ GeV

Guannan Xie (for the STAR Collaboration)

Lawrence Berkeley National Laboratory University of Science and Technology of China

2015 Fall Meeting of the APS Division of Nuclear Physics

Guannan Xie

Charm quarks: $m_c >> \Lambda_{QCD}$, $T_{QGP(RHIC/LHC)}$

- Produced early in collision at RHIC through hard scattering
- Experience the whole evolution of the system -> good probe for medium properties

Charm quarks: $m_c \gg \Lambda_{QCD}$, $T_{QGP(RHIC/LHC)}$

- Produced early in collision at RHIC through hard scattering
- Experience the whole evolution of the system -> good probe for medium properties

STAR A Results Before the Heavy Flavor Tracker

- Precision measurement is needed to further constrain models and to quantify medium properties.
- New 2014 Au+Au results with HFT will be presented
 -- p+p and p+Au data with HFT are recorded (run 2015)

STAR Detector

Time Of Flight detector: **Time Projection Chamber:** PID $(1/\beta)$ Tracking, PID (dE/dx)FFFF **Heavy Flavor Tracker** HFT: Silicon Strip Detector: r ~22 cm Intermediate Silicon Tracker: r~14 cm • PIXEL detector: r ~2.8 & 8 cm, • MAPS, 20x20 μ m², 0.4%X₀, air-cooled

Guannan Xie

October 28-31, 2015, Santa Fe, NM

Au+Au at $\sqrt{s_{NN}}$ = 200 GeV, with Heavy Flavor Tracker ~780M minimum bias events analyzed (out of total 1.2B recorded in 2014)

PIXEL detector

DCA (Distance of Closest Approach) resolution

- ~ 30 µm at high p_T
- Kaon with p = 750 MeV/c, DCA resolution <50 μ m

D ⁰	w/o HFT	with HFT
Year	2010 + 2011	2014
Significance per billion events	13	51

• With the HFT, significantly enhanced D⁰ signal-to-background ratios in a broad range of transverse momentum

• [High p_T] Consistent with published result, with improved statistical precision - Finalizing systematic uncertainties for p_T < 2 GeV/c

October 28-31, 2015, Santa Fe, NM

 R_{AA} : D⁰ vs. π

•
$$R_{AA}(D) \sim R_{AA}(\pi)$$
 at $p_T > 4 \text{ GeV/c}$

STAR D⁰: PRL 113 (2014) 142301 STAR π : PLB 655 (2007) 104

R_{AA}: **RHIC** vs. **LHC**

STAR D⁰: PRL 113 (2014) 142301 ALICE D: arXiv: 1509.06888 **STAR A** R_{AA}: Comparison to Models

- DUKE: Langevin simulation, input parameter (2πT)D = 7 (tuned to the LHC data)
- TAMU: non-perturb., Full T-matrix treatment, $(2\pi T)D = 2-10$
- SUBATECH: perturb. +HTL
 +resummation, (2πT)D = 2-4

Data compatible with models which predict the value of diffusion coefficient in the range $2 < (2\pi T)D <$ 10, same models can also reproduce the measured D⁰ v₂ ^[QM15,talk ID:493]

> STAR: PRL 113 (2014) 142301 DUKE: PRC 92 (2015) 024907 Theory: arXiv:1506.03981(2015)

Theory curves: latest calculations from private communications

Summary & Outlook

- First measurement of $D^0 R_{AA}$ using STAR HFT.
 - Significant suppression at high p_T in central Au+Au collisions
 - Improved data precision, will further constrain models
 - Extracted diffusion coefficient 2 < $(2\pi T)D$ < 10 for central Au+Au collisions at RHIC, consistent with what we learned from the charm hadron v₂ measurements
- Near future outlook with HFT
 - Year 2014 full D^0 spectra and R_{AA} is coming soon
 - Year 2015 p+p and p+Au data is on the way
 - Year 2016 Au+Au 2 Billion minimum bias events, high statistics data will help to reduce the uncertainty of the medium property $(2\pi T)D$

STAR 🖈

Thank You

The state of the second

 D^0 efficiency = TPC tracking eff \otimes HFT tracking eff \otimes topological cuts

Data-driven simulation (5-15% p_T -dependent systematics)

- HFT matching and resolution smearing using distributions extracted from data:
 - HFT eff. × geometrical acceptance: (HFT matched tracks) / TPC tracks.
 - Spatial resolution: DCA distributions of HFT matched tracks (XY-Z dependence).

Luminosity, centrality, azimuth and pseudo-rapidity dependence have been considered.

Embedding (~3% systematic uncertainty)

- Full STAR GEANT simulation
 - + MC embedded in real raw data + data reconstruction chain

STAR 🖈 Topology distribution comparison

October 28-31, 2015, Santa Fe, NM

STAR A V₂: Comparison to Models

Also good agreement between models and experiment for v_2

Compatible with models predicting a value of diff. coefficient between 2 to ~10

Theory curves: latest calculations from private communications