

## Nuclear Modification Factors of D<sup>0</sup> Meson in Au+Au Collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$

### Guannan Xie

University of Science and Technology of China Lawrence Berkeley National Laboratory (for the STAR Collaboration)



Guannan Xie

Sept. 27 - Oct 3, 2015, Kobe, Japan



- Physics Motivation
- STAR with Heavy Flavor Tracker
- Analysis Details

- D<sup>0</sup> Reconstruction & Efficiency correction

- Results & Discussion
- Summary & Outlook



Charm quarks:  $m_c >> T_C$ ,  $\Lambda_{QCD}$ ,  $m_{u,d,s} T_{QGP(RHIC/LHC)}$ 

- Produced early in collision at RHIC through hard scattering
- Experience the whole evolution of the system -> good probe for medium properties





Charm quarks:  $m_c \gg T_C$ ,  $\Lambda_{QCD}$ ,  $m_{u,d,s} T_{QGP(RHIC/LHC)}$ 

- Produced early in collision at RHIC through hard scattering
- Experience the whole evolution of the system -> good probe for medium properties









- Precision measurement is needed to further constrain models and to quantify medium properties.
- New run 2014 Au+Au results with HFT will be presented
  -- p+p and p+Au data with HFT are recorded on tape (run 2015)



### **STAR Detector**





Au+Au @ 200GeV Run2014, with Heavy Flavor Tracker ~780M minimum bias events analyzed (out of total 1.2B recorded in 2014)



DCA (Distance of Closest Approach) resolution

- ~ 30 µm at high p<sub>T</sub>
- Kaon with p = 750 MeV/c, DCA resolution <50  $\mu$ m

Quark Matter 2015, Kobe, Japan







| <b>D</b> <sup>0</sup>           | w/o HFT     | with HFT |
|---------------------------------|-------------|----------|
| Year                            | 2010 + 2011 | 2014     |
| # Events (MB) analyzed          | 1.1 B       | 780M     |
| Significance per billion events | 13          | 51       |

Quark Matter 2015, Kobe, Japan





• Clean D<sup>0</sup> signals reconstructed with significantly enhanced signal-tobackground ratios with the HFT in a broad range of transverse momentum

Guannan Xie

Quark Matter 2015, Kobe, Japan



 $D^0$  efficiency = TPC tracking eff  $\otimes$  HFT tracking eff  $\otimes$  topological cuts

Data-driven simulation (5-15%  $p_T$ -dependent systematics)

- HFT matching and resolution smearing using distributions extracted from data:
  - HFT eff. × geometrical acceptance: (HFT matched tracks) / TPC tracks.
  - Spatial resolution: DCA distributions of HFT matched tracks (XY-Z dependence).

Luminosity, centrality, azimuth and pseudo-rapidity dependence have been considered.

Embedding (~3% systematic uncertainty)

- Full STAR GEANT simulation
  - + MC embedded in real raw data + data reconstruction chain



## **Invariant yields**

STAR: PRL 113 (2014) 142301



• [High  $p_T$ ] Consistent with published result, with improved statistical precision - Finalizing systematic uncertainties for  $p_T$ < 2 GeV/c and in peripheral collisions



## **Nuclear Modification Factors**

#### STAR: PRL 113 (2014) 142301



- High p<sub>T</sub>: significant suppression in central Au+Au collisions. New results have improved precision.
- p+p precision to be improved using 2015 data with HFT





•  $R_{AA}(D) \sim R_{AA}(\pi)$  at  $p_T > 4 \text{ GeV/c}$ 

Similar energy loss for light partons and charm quarks at high  $\ensuremath{p_{\text{T}}}$ 

STAR: PRL 113 (2014) 142301 PLB 655 (2007) 104



**RHIC vs. LHC** 



STAR: PRL 113 (2014) 142301 ALICE: arXiv: 1509.06888





DUKE: Langevin simulation, input parameter  $(2\pi T)D=7$  (tuned to the LHC data)

STAR: PRL 113 (2014) 142301 DUKE: PRC 92 (2015) 024907 A. Andronic arXiv:1506.03981(2015)

Theory curves: latest calculations from private communications

Guannan Xie





DUKE: Langevin simulation, input parameter  $(2\pi T)D=7$  (tuned to the LHC data)

TAMU: non-perturb.,  $(2\pi T)D = 2-10$ 

STAR: PRL 113 (2014) 142301 DUKE: PRC 92 (2015) 024907 A. Andronic arXiv:1506.03981(2015)

Theory curves: latest calculations from private communications

Guannan Xie





DUKE: Langevin simulation, input parameter  $(2\pi T)D=7$  (tuned to the LHC data)

TAMU: non-perturb.,  $(2\pi T)D = 2-10$ 

SUBATECH: perturb. +resummation,  $(2\pi T)D = 2-4$ 

> STAR: PRL 113 (2014) 142301 DUKE: PRC 92 (2015) 024907 A. Andronic arXiv:1506.03981(2015)

For v<sub>2</sub>, see talk by M. Lomnitz (Tue. 9:00)

Theory curves: latest calculations from private communications



## **Summary & Outlook**



- First measurement of  $D^0 R_{AA}$  using STAR HFT.
  - Significant suppression at high  $p_T$  in 0-10% Au+Au collisions at  $\sqrt{s_{NN}}$  = 200 GeV
  - Improved data precision with HFT will further constrain different models
- Near future outlook
  - $D^0$  spectra and  $R_{AA}$  with HFT in full  $p_T$  and peripheral Au+Au collisions
  - Year 2015 p+p and p+Au data to improve baseline and to address CNM effects

# **Thank You**

Quark Matter 2015, Kobe, Japan

- 7- PALIFIC PAR

Guannan Xi



## BackUp

## **STAR** 🖈 Topology distribution comparison



