Λ_c Production in Au+Au Collisions at $\sqrt{s_{NN}} = 200$ GeV

at the STAR experiment

Guannan Xie, for the STAR Collaboration

Lawrence Berkeley National Laboratory & University of Science and Technology of China

ABSTRACT: Charm quarks, predominantly produced in the early stage of heavy-ion collisions, are believed to provide unique information on the hot and dense medium created in such collisions. At RHIC, an enhancement in baryon-to-meson ratios for light hadrons and hadrons containing strange quarks has been observed in central heavy-ion collisions compared to p+p and peripheral heavy-ion collisions in the intermediate p_T range (2 < p_T < 6 GeV/c). This was explained by the hadronization mechanism involving multi-parton coalescence. Λ_c is the lightest charmed baryon with the mass close to D⁰ meson, and has an extremely short life time ($c\tau \sim 60 \ \mu m$). Different models predict different levels of enhancement in the Λ_c/D^0 ratio depending on the degree of charm quark thermalization in the medium and how the coalescence mechanism is implemented. In this poster, we will report the first measurement of Λ_c production in heavy-ion collisions using the recently installed Heavy Flavor Tracker at STAR. The Λ_c baryon is reconstructed through the hadronic decay channel ($\Lambda_c \rightarrow pK\pi$) using topological cuts optimized by the Toolkit for Multivariate Data Analysis (TMVA). The invariant yield of Λ_c for 3 < p_T < 6 GeV/c is measured in 10-60% central Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV. The measured Λ_c/D^0 ratio will be compared with different model calculations, and the physics implications will be discussed.

Motivation

- Significant enhancement in baryon-to-meson ratio has been observed in central heavy-ion collisions compared to p+p and peripheral heavy-ion collisions in the intermediate transverse momentum (p_T) range for light hadron and hadrons containing strange quarks, suggesting hadronization through collective multi-parton coalescence.
- Charm baryon-to-meson ratio in heavy-ion collisions is sensitive to the charm quark hadronization mechanism, charm quark thermalization. Different models have quite different predictions for this enhancement and to charm quark thermalization.

Transverse Momentum p₋ (GeV/c) [1] S. Ghosh et al., PRD 90 054018 (2014). [2] Y. Oh et al., PRC 79 044905 (2009). [3] S. Lee et al., PRL 100 222301 (2008).

Λ_{c} Reconstruction

 Λ_c^+ (udc), mass ~ 2286 MeV/c², ct ~ 60 μ m D^+ (cd), mass ~ 1869 MeV/c², ct ~ 311 µm

Direct topological reconstruction: $\Lambda_c^+ \rightarrow p^+ K^- \pi^+ BR \sim 6.35\%$

2.4

2.3

 $M_{pK\pi}$ (GeV/c²)

2.5

2.1

2.2

2.1

STAR

Efficiency : Data-Driven Fast Simulation

Ingredients:

• Extract centrality-dependent vertex z distributions from data.

(Rectangular) Topological Cut Optimization using TMVA

2.3

 $M_{pK\pi}$ (GeV/c²)

2.4

2.5

2.4

 $M_{pK\pi}$ (GeV/c²)

• Background was constructed from real data using wrong-sign method.

2.2

- Signal was simulated with data-driven fast simulation.
- The figures below show the comparison between signal and background for $p_T > 3$ GeV/c.

- Extract ratio of HFT matched tracks to TPC tracks from data.
- Extract DCA_{XY} DCA_Z distributions from data.

Validated with full **GEANT** simulation !

• Extract TPC efficiency and momentum resolution from embedding.

Comparison of fast simulation and full GEANT simulation

• Λ_c reconstruction efficiency

Results

- The invariant yield of Λ_c for $3 < p_T < 6$ GeV/c is measured in 10-60% central Au+Au collisions.
- The ratio of Λ_c over D⁰ ratio in 10-60% Au+Au collisions is significantly enhanced than PYTHIA prediction in proton-proton collisions. 1.3 ± 0.3 (stat.) ± 0.4 (sys.)

Summary and Outlook

- First measurement of Λ_c in heavy-ion collisions by STAR.
- A significant enhancement in the ratio of Λ_c over D⁰ has been observed in Au+Au collisions (10-60%) at $\sqrt{s_{NN}} = 200$ GeV.
- **OUTLOOK**: In run 2016, STAR recorded 2 billion Au+Au events with all inner ladders replaced with Al cables and better operation with more active sensors. More precise measurements of Λ_c production, especially its R_{cp} , will be possible.

The STAR Collaboration drupal.star.bnl.gov/STAR/presentations

