Measurement of Total and Elastic Cross Sections in p+p collisions at $\mathrm{Vs}=200 \mathrm{GeV}$ with the STAR Detector at RHIC

Włodek Guryn and Bogdan Pawlik
For the STAR Collaboration

1. Experimental setup at STAR
2. Data set
3. Analysis
4. Distributions of physics variables (-t, ϕ)
5. Simulations and efficiency, acceptance corrections
6. Results: $\mathrm{d} \sigma / \mathrm{dt}, \mathrm{B}$-slope, $\sigma_{\mathrm{tot}}, \sigma_{\mathrm{el}}$

Experimental Setup

In this configuration, RP program at STAR was able to acquire large data samples without special running conditions - mostly for CEP, SDD and CP analyses (see talks
by L. Fulek and R. Sikora at this conference).

Data Analysis

- Trigger was very inclusive: it required only a signal in at least one RP on each side.

$$
\text { RP_ET }=(\mathbf{E} 1 \mathbf{U} \vee \mathbf{E} 2 \mathbf{U} \vee \mathbf{E} 1 \mathbf{D} \vee \mathbf{E} 2 \mathbf{D}) \wedge(\mathbf{W} 1 \mathbf{U} \vee \mathbf{W} 2 \mathbf{U} \vee \mathbf{W} 1 \mathbf{D} \vee \mathbf{W} 2 \mathbf{D})
$$

- Need to minimize background and maximize efficiency.
- To reduce background need angle reconstruction => two RPs on each side in up - down combination.

```
EU = (E1U ^ E2U); ED = (E1D ^ E2D)
WU = (W1U ^W2U); WD = (W1D ^ W2D)
ET1 = (EU ^WD)
ET2 = (ED ^WU)
```

- Use events with four track points - one track point per Roman Pot.
- Finally, choose fiducial region away from the apertures of DX magnet and beam pipe in front of the RPs.

Collinearity

$$
\overrightarrow{p_{1}}=-\overrightarrow{p_{2}} \Rightarrow\left(\Theta_{x 1}, \Theta_{y 1}\right)=\left(-\Theta_{x 2},-\Theta_{y 2}\right) \Rightarrow \Delta \Theta_{x}=\Delta \Theta_{y}=0
$$

Since the elastic events must satisfy collinearity condition collinearity within $2 \sigma_{\theta}$. Namely $\left|\theta_{\text {west }}-\theta_{\text {East }}\right|<2 \sigma_{\theta}$, where $\sigma_{\theta}=255 \mu \mathrm{rad}$, is required.

Events are well centered within
2σ and 3σ contours.

Geometrical Acceptance GEANT4 MC: I

Choice of geometrical acceptance (t, ϕ) plane

$$
0.04 \leq|t| \leq 0.16\left[(G e V / c)^{2}\right]
$$

$79.5 \leq|\phi| \leq 101.5[d e g]$
$2.00 \leq \theta \leq 4.00[\mathrm{mrad}]$

Geometrical Acceptance and Event Yields

Condition	\# events
ET triggered	6.607 M
ET accepted	3.974 M
Collinear	2.696 M
4 PT Collinear	1.100 M
4 PT Collinear Geom.	0.667 M

667K events used for the final analysis
Choose region away from steep variation and edges of acceptance

GEANT4 MC: Background Study

1. Each distribution is normalized to 1, independently
2. Normalization MC to Data done by normalizing peaks
3. Background mostly due to the rescattered protons in the the beam pipe and the DX magnet
4. Background is small - 0.3%, after $2 \Delta \Theta$ cut and after geometrical acceptance cut

Results: Corrected do/dt and Fits

$$
\begin{aligned}
\frac{d \sigma_{e l}}{d t} & =\frac{1+\rho^{2}}{16 \pi(\hbar c)^{2}} \cdot \sigma_{t o t}^{2} \cdot e^{-B|t|} \\
\sigma_{t o t}^{2} & =\left.\left(\frac{16 \pi(\hbar c)^{2}}{1+\rho^{2}}\right) \frac{d \sigma_{e l}}{d t}\right|_{t=0} \\
\sigma_{e l} & =\int \frac{d \sigma_{e l}}{d t} d t
\end{aligned}
$$

The value of $\rho=0.128$ from COMPETE model was used*.

* Phys. Rev. Lett. 89 (2002) 201801

Results

Fit results

FILTER	$\mathrm{d} \sigma_{e l} /\left.\mathrm{d} \boldsymbol{t}\right\|_{t=0}\left[\mathrm{mb} / \mathrm{GeV}^{2}\right]$	$B\left[\mathrm{GeV}^{-2}\right]$	$\sigma_{t o t}[\mathrm{mb}]$	$\sigma_{e l}[\mathrm{mb}]$
4PT-COL	134.3 ± 1.6	14.0 ± 0.2	50.7 ± 0.6	9.6 ± 0.1
4PT-GEO	136.7 ± 0.8	14.2 ± 0.2	51.3 ± 0.4	9.6 ± 0.1

Quantity			Statistical uncertainty	Systematic uncertainty
name	units	Value	anyyn	
\boldsymbol{B}	$\left[(G e V / c)^{-2}\right]$	14.2	± 0.1	± 0.3
$\sigma_{e l}$	$[\mathrm{mb}]$	9.6	± 0.1	± 0.7
$\sigma_{t o t}$	$[\mathrm{mb}]$	51.3	± 0.4	${ }_{-1.9}^{+2.1}$

The main source of systematic uncertainty are: luminosity measurement and beam tilt angle.

Comparison with the World Data

STAR results compare well with the world data and the COMPETE predictions: Phys. Rev. Lett. 89 (2002) 201801
Plots form the TOTEM Collaboration https://arxiv.org/pdf/1712.06153v2.pdf with STAR preliminary results added

Summary

1. The STAR experiment at RHIC measured elastic differential cross sections in the $|\mathrm{t}|$-range [0.045, 0.125] ($\mathrm{GeV} / \mathrm{c})^{2}$ in $\mathrm{p}+\mathrm{p}$ collisions at $\mathrm{V} s=200 \mathrm{GeV}$.
2. The resulting values of B -slope, $\sigma_{\text {tot }}, \sigma_{\text {el }}$ are:

- Slope parameter $B=14.2 \pm 0.1$ (stat) ± 0.3 (syst) $(\mathrm{GeV} / \mathrm{c})^{-2}$
- The total cross section $\sigma_{\text {tot }}=51.3 \pm 0.4$ (stat) + 2.1-1.9 (syst) (mb) COMPETE Predictor, Phys. Rev. Lett. 89 (2002) $201801 \sigma_{\text {tot }}=51.76 \pm 0.12$ (stat) $+0.4-0.2$ (syst) mb
- The elastic cross section $\sigma_{\text {el }}=9.6 \pm 0.1$ (stat) ± 0.7 (syst) mb

At this point, the largest syst. uncertainties are: 1% due to the beam tilt angle and 7% due to the luminosity.
We expect the luminosity uncertainty to be about 3% after the careful calibration.

