

Results on Total and Elastic Cross Sections in p+p collisions at Vs = 200 GeV with the STAR Detector at RHIC

Włodek Guryn

For the STAR Collaboration

1. Experimental setup at STAR

- 2. Data set
- 3. Analysis
- 4. Distributions of physics variables (-t, ϕ)
- 5. Simulations and efficiency, acceptance corrections
- 6. Results: $d\sigma/dt$, B-slope, σ_{tot} , σ_{el}

Experimental Setup

In this configuration, the RP program at STAR was able to acquire large data samples without special running conditions – mostly for CEP, SDD and CP analyses.

Data Analysis

• Trigger was very inclusive: it required only a signal in at least one RP on each side.

 $\mathbf{RP}_{-}\mathbf{ET} = (\mathbf{E1U} \lor \mathbf{E2U} \lor \mathbf{E1D} \lor \mathbf{E2D}) \land (\mathbf{W1U} \lor \mathbf{W2U} \lor \mathbf{W1D} \lor \mathbf{W2D})$

- Need to minimize background and maximize efficiency.
- To reduce background need angle reconstruction => two RPs on each side in up down combination.

$$\begin{split} \mathbf{E}\mathbf{U} &= (\mathbf{E}\mathbf{1}\mathbf{U}\wedge\mathbf{E}\mathbf{2}\mathbf{U}) \ ; \ \mathbf{E}\mathbf{D} &= (\mathbf{E}\mathbf{1}\mathbf{D}\wedge\mathbf{E}\mathbf{2}\mathbf{D}) \\ \mathbf{W}\mathbf{U} &= (\mathbf{W}\mathbf{1}\mathbf{U}\wedge\mathbf{W}\mathbf{2}\mathbf{U}) \ ; \ \mathbf{W}\mathbf{D} &= (\mathbf{W}\mathbf{1}\mathbf{D}\wedge\mathbf{W}\mathbf{2}\mathbf{D}) \\ \mathbf{E}\mathbf{T}\mathbf{1} &= (\mathbf{E}\mathbf{U}\wedge\mathbf{W}\mathbf{D}) \\ \mathbf{E}\mathbf{T}\mathbf{2} &= (\mathbf{E}\mathbf{D}\wedge\mathbf{W}\mathbf{U}) \end{split}$$

- Use events with four track points (two on each side of IP) one track point per Roman Pot.
- Finally, choose fiducial region away from the apertures of DX magnet and beam pipe in front of the RPs.

Collinearity

$$\vec{p_1} = -\vec{p_2} \Rightarrow (\Theta_{x1}, \Theta_{y1}) = (-\Theta_{x2}, -\Theta_{y2})$$

Since the elastic events must satisfy collinearity condition collinearity within $2\sigma_{\theta}$ is required.

Namely $|\theta_{West} + \theta_{East}| < 2\sigma_{\theta}$,

where $\sigma_{\theta} = 255 \ \mu$ rad is mostly due to beam angular divergence.

Events are well centered within 2σ and 3σ contours.

Geometrical Acceptance GEANT4 MC: I

Choice of geometrical acceptance in (t, ϕ) plane, -t = p² Θ ² $0.04 \le |t| \le 0.16[(GeV/c)^2]$

 $79.5 \leq |\phi| \leq 101.5[deg]$

 $2.00 \leq \theta \leq 4.00 [mrad]$

Choose region away from steep variation due to edges of acceptance:

- 1. At low |t| away from the beam envelope.
- 2. At "large" |t| away from the apertures.

Geometrical Acceptance and Event Yields

In the fit range the acceptance is basically flat.

Condition	# events		
ET triggered	6.607M		
ET accepted	3.974M		
Collinear	2.696M		
4 PT Collinear	1.100M		
4 PT Collinear Geom.	0.667M		

667K events were used for the final analysis

Integrated luminosity ~1.83 pb⁻¹

GEANT4 MC: Background Study

- 1. Each distribution is normalized to 1, independently
- 2. Normalization MC to Data done by normalizing peaks
- 3. Background mostly due to the rescattered protons in the the beam pipe and the DX magnet
- 4. Background is small 0.13%, after $2\Delta\Theta$ cut and after geometrical acceptance cut

Results: Corrected $d\sigma/dt$ and Fits

Wlodek Guryn

STAR Preliminary Results at $\sqrt{s} = 200 \text{ GeV}$

Quantity			Statistical	Systematic uncertainties			
name	units	Value	uncertainty	beam-tilt	lumi	ρ	full
$d\sigma_{el}/dt _{t=0}$	[mb/GeV ²]	139.53	±1.06	+1.07 -0.83	$+10.50 \\ -10.07$	n/a	+10.55
В	$[GeV^{-2}]$	B 14.32	±0.09	+0.18 -0.32	n/a	n/a	+0.18 -0.32
σ_{el}	[GeV ⁻²] [mb]fillible ppblitb]	9.74	±0.02	$^{+0.06}_{-0.04}$	$^{+0.74}_{-0.59}$	n/a	$^{+0.74}_{-0.59}$
σ^{det}_{el}	patrib]	3.63	±0.01	$+0.02 \\ -0.01$	+0.28 -0.23	n/a	+0.28 -0.23
Tind ST	alla [mb]	51.81	±0.20	+0.19 -0.61	$^{+1.91}_{-1.90}$	+0.19 -0.41	$^{+1.93}_{-2.04}$
σ_{inel}	[mb]	42.07	±0.20	+0.20 -0.61	+2.05 -1.99	+0.20 -0.40	+2.07 -2.12

The main sources of systematic uncertainty are: luminosity measurement and beam tilt angle in the RP coordinate system.

Comparison with the World Data

STAR results compare well with the world data and the COMPETE predictions: Phys. Rev. Lett. 89 (2002) 201801 Plots form the TOTEM Collaboration <u>https://arxiv.org/pdf/1712.06153v2.pdf</u> with STAR preliminary results added

Summary

- 1. The STAR experiment at RHIC measured elastic differential cross sections in the |t|-range [0.045, 0.135] (GeV/c)² in p+p collisions at $\sqrt{s} = 200$ GeV.
- 2. The resulting values of B-slope, σ_{tot} , σ_{el} and σ_{el}^{det} are:
 - Slope parameter B = 14.32 ± 0.09 (stat) [+0.18 0.32] (syst)(GeV/c)⁻²
 - The total cross section σ_{tot} = 51.81 ± 0.2 (stat) [+ 1.93 2.04] (syst) (mb) COMPETE Predictor, Phys. Rev. Lett. 89 (2002) 201801 σ_{tot} = 51.76 ± 0.12 (stat) +0.4 -0.2 (syst) mb
 - The elastic cross section σ_{el} = 9.74 \pm 0.02 (stat) $[^{+0.74}{}_{-0.59}]$ (syst) mb
 - Elastic cross section within acceptance $\sigma_{el}^{~det}$ = 3.63 \pm 0.01 $^{[+0.28}_{-0.23}]$ (syst) mb
 - We see no need for a quadratic term in the exponent of the elastic cross section

We also have data at Vs = 510 GeV at higher t-range, where there is change in slope

At this point, the largest syst. uncertainties are: 1% due to the beam tilt angle and 7% due to the luminosity. We expect the luminosity uncertainty to be about 3% after the careful calibration.