

Recent Results from STAR

Rashmi Raniwala for **STAR Collaboration** High Energy Physics Symposium Dec. 13-18, 2010, Jaipur

THE STAR DETECTOR

OUTLINE

- Parity violation in Strong interactions?
- Locating QCD Critical Point: Data from AuAu Vs_{NN} = 9.2 GeV
- Higher Moments of Net protons distribution : Do we see

ZDO

Exotic phenomenon at STAR: First observation of ANTI-MATTER HYPER-NUCLEUS

Ref: Science 328 (2010) 58

Anti-Matter Hyper-Nucleus at STAR

Detecting Anti-Hyper-Triton

Coalescence model : To form a hyper-Nucleus the nucleons & hyperons have to be in close proximity

So Hyper-Nuclei Yield -> Sensitive to phase-space distbn. of p n Λ P. Braun-Munzinger, J. Stachel, Nature 448(2007)302 , M. Danysz, J. Pniewski, Phil. Mag. 44(1953) 348

e.g.
$$\frac{1}{\sqrt{3}} \frac{1}{A} He^{-\frac{3}{A}} He = \frac{\overline{\Lambda}}{\Lambda} * \frac{\overline{p}}{p} * \frac{\overline{n}}{n}$$

Ratios of Hyperons and Nucleons available from particle spectra. Measured Ratios of Hyper-Nuclei : consistent with Coalescence Model

Particle Type	Measured Ratio
$\frac{3}{\Lambda}\overline{H}/_{\Lambda}^{3}H$	$0.49 \pm 0.18 \pm 0.07$
$^{3}\overline{He}/^{3}He$	$0.45 \pm 0.02 \pm 0.04$
${}^{3}_{\Lambda}\overline{H}/{}^{3}\overline{He}$	$0.89 \pm 0.28 \pm 0.13$
$^{3}_{\Lambda}H/^{3}He$	0.82 ± 0.16 ± 0.12

Strangeness phase space population is similar to that of light quarks

Particle Production at Forward Rapidity

Collective knowledge by RHIC experiments have shown that

• Process of particle production different in different phase space regions.

Ref: PHOBOS Coll: PRL 87(2001)102303; PRL 91(2003) 052303)

• Different particle species might show different behaviour of production in the same phase space.

Ref: STAR Coll. J. Adams et al., Phys. Rev. Lett. 95 (2005)062301 ;

HIJING: Total produced particle has contributions from:
Soft processes (N_{part} scaling) + Hard processes (N_{collisions} scaling)
Varying event centrality -> Relative contribution of soft and hard
processes. Ref: PHENIX Coll. PRL 86 (2001) 3500

• PMD at STAR studies photons production (different species) at forward rapidity -3.7 < η < -2.3 (different phase space) : Compares with charge particle production at RHIC ! Phys. Rev. C 73 (2006) 34906; Phys. Rev. Lett. 95 (2005) 62301

The Photon Multiplicity Detector at STAR

Nucl. Instrum. Meth. A 499 (2003) 751

Photon Multiplicity Detector measures N_v and dN_v/dη at forward rapidity $(-3.7 < \eta <$ -2.3)Designed, Fabricated, Installed & Maintained by 3 Indian Univ. & 3 Institutes. Photon Production studied as a function of: • Event centrality System size : AuAu and CuCu collisions Center of mass Energy (Vs_{NN}): 200 GeV & 62.4 GeV

Photon Production: Scaling with N_{part}

Nucl.Phys.A 832: 134-147, 2010

Ref: PHOBOS data : PRL 87 (2001) 102303 ; PRL 91(2001) 052303

- N_{γ} measured in -3.7 $\leq \eta \leq$ -2.3 have been scaled with $N_{part}/2$
- Increasing coll. energy increases N_v
- CuCu and AuAu collisions at same N_{part} have same N_{γ}
- $N_{\gamma}/0.5*N_{part}$ constant with N_{part} : Photon production at forward rapidity is due to Soft processes
- HIJING results match well with data
- N_{ch} also scales with N_{part}
- N_{ch}/N_{γ} = 1.4 ± 0.1 for Vs_{NN} = 62.4GeV = 1.2 ± 0.1 for Vs_{NN} = 200 GeV

STAR Lon

Longitudinal Scaling of Photon Production

 dN_{ch}/dη/0.5*N_{part} v/s (η -y_{beam})
 independent of beam energy:
 Limiting Fragmentation Phys. Rev. 188 (1969) 2159

 Longitudinal scaling observed for Photons at forward rapidity independent of Beam Energy, Event Centrality

STAR Coll. PRL 95(2005) 062301

- Now also seen to be true for different Colliding Systems
- Longitudinal scaling in Charge Particles centrality dependent at $\eta - \gamma_{beam} = 0.25$ to 1.25 STAR Coll. Phys. Rev. C 73 (2006) 034906.

WHY IS ANISOTROPIC FLOW IMPORTANT?

•Anisotropic Geometry + strongly interacting medium -> Momentum anisotropy -> More particles emitted in Reaction Plane : FLOW •Reaction zone expansion -> decreases spatial eccentricity : Self Quenching •Flow develops before ε_{χ} vanishes -> Sensitive to early stages of evolution. $[(1/N)dN/d(\Phi - \Psi_R)] \sim 1 + 2v_1 \cos(\Phi - \Psi_R) + 2v_2 \cos 2(\Phi - \Psi_R)$

S,Voloshin & A.Poskanzer Phys. Rev. C 58: 1671-1678, 1998

FLOW AT RHIC : Hydrodynamics works!

- Initial results of v₂ by STAR : Large values, close to the ideal hydrodynamic model with complete thermalization
- v₂ depends on
- ✓ Equation of state of the system
- ✓ Initial Spatial Eccentricity ϵ
- v_2/ϵ : filters out trivial effect of geometry
- Calculate ε using models :
 Glauber And Color Glass
 Condensate

A Closer look at p_T dependence of v_2/ϵ

- v₂/ε increases with centrality for both Glauber & CGC initial conditions
 ✓ Better conversion of initial ε to final v₂
- CGC eccentricity is larger and hence gives smaller v_2/ϵ values
- Both models indicate higher thermalization in more central collisions₁₄

Number of Constituent Quark Scaling

STAR Coll. Phys. Rev. C 72 (2005) 1490

- v_2 shows a rise with p_T at low p_T : matches with Hydrodynamic model
- At intermediate $p_T : v_2$ saturates
- Saturation value different for Mesons and Baryons->Depends on Number of Quarks?
- v₂ Scaled by Number of Constituent Quarks: Mesons and Baryon scale at intermediate p_T : NCQ Scaling
- Suggests partonic degrees of freedom during early stages of event evolution

Why v₂ of Multi-strange hadrons?

Does Multi-strange hadron v_2 show same features as lighter hadrons?

X Elliptic Flow of Multi-strange hadrons: Φ, Ξ, Ω

NPA 830 (2009) 187

• v₂ is of the same order as for lighter hadrons

- NCQ scaling works well upto $p_T/n_q \sim 1.5 \text{ GeV/c}$
- validates coalescence model -> Partonic degrees of freedom

ρ⁰ Meson Production and NCQ Scaling

•Decay Mode $\rho^0 \rightarrow \pi^+ \pi^-$ Invariant mass -> Fit to Hadronic cocktail ($\omega^0 K^*$ $\rho^0 K_{\rm s}....)$ Hadronic decay products sensitive to medium Production Mechanism probed using NCQ Scaling of v_2 $\pi^{+}\pi^{-} -> \rho^{0}$ $n_{a} = 4$ $q \bar{q} \rightarrow \rho^0 n_q = 2$

•Prabhat Pujahari's talk in QMRHIC parallel session

ρ⁰ v₂ at intermediate p_T (1.5 to 4.0 GeV) shows n_q = 2 scaling
Production mode by quark and anti-quark pair dominant!

Is Local Parity Violation in Strong Interactions Observable?

Kharzeev, Kraanitz, Venugopalan PL B545 (2002)298 and references therein

Local P-Odd domains result in charge separation along the large Magnetic field of the medium. T.D.Lee,PRD 8,1226(1973), T.D.Lee & G.C.Wick, PRD 9,2291(1974)

Charge Separation in a Heavy Ion Collision

Kharzeev, PLB 81(1998)512 Kharzeev, Zhitnitsky, NPA 797 (2007)67, Kharzeev, McLerran, Warringa, NPA 803(2008) 67, Voloshin PRC 62(2000)044901, Liang, Wang, PRL 94(2005)102301

Observing Charge separation w.r.t. Reaction Plane

Azimuthally Anisotropic Distribution : was charge independent earlier.

: Now has a charge dependent term

$$\frac{dN_{\pm}}{d\phi} \sim 1 + 2\sum_{n=1}^{\infty} v_n \cos(n\Delta\phi) + 2a_{\pm} \sin\Delta\phi + \dots$$

Predicted charged particle asymmetry $a_{\pm} \sim 1\%$ for mid-central collisions BUT averaged over all events -> $<a_{\pm}>=$ \circledast

If we measure charge particle correlations $\langle a_{\alpha}a_{\beta} \rangle \dots$ Does not vanish \odot $\langle a_{\alpha}a_{\beta} \rangle \sim 10^{-4}$: Can be measured using correlation with Reaction Plane OR using a three particle correlator $\langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\phi_{c}) \rangle$

$$\left\langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\Psi_{RP}) \right\rangle = \left[\left\langle v_{1,\alpha} v_{1,\beta} \right\rangle + Bg^{(in)} \right] - \left[\left\langle a_{\alpha} a_{\beta} \right\rangle + Bg^{(out)} \right]$$
$$\left\langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\Psi_{RP}) \right\rangle = \left\langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\phi_{c}) \right\rangle / v_{2,c}$$

Observation from Data and Simulations

- Same Charge signal <a₊a₊>,
 <a₋a₋> is strong
- Opposite charge signal <a₁a₂ > is small : suppression by medium !
- Opposite Charge signal dominated by background according to models

•Reaction Plane dependent and independent background effects built into various models do not explain Same Charge Signal

Local Strong Parity Violation: A possible explanation of the observed phenomenon

STAR QCD Phase Diagram : Locating Critical Point

- Lattice QCD Y. Aoki et al. Nature 443 (2006) 675 , PLB 643 (2006) 46 At μ_B =0; phase transition is a cross-over at T ~170 MeV
- QCD based Model Calculations: C.Athanasiou, M. Stephanov, K. Rajagopal PRL 102(2009)032301, R. Gavai S.Gupta PRD 78 (2008) 114503
- At large μ_{B} : 1st order phase transition
- 1st order transition ends at CP

QCD Phase space mapped exptly. by varying Vs_{NN} in HI Collisions PR D78(2008) 074597; PR D74(2006)054507 ; PRC 79(2009) 0152202 ; Prog.Th.Phy.Supp 153(2004)139

- ⇒ RHIC Beam Energy Scan $\sqrt{s_{NN}}$ = 5-39 GeV -> μ_B = 550 100MeV ⇒ STAR known to work very well at top RHIC energies !
- Check it work as well at low energy : AuAu collisions $Vs_{NN} = 9.2 \text{ GeV}$
- Need tools to detect CP : Higher Moments of Net Proton Multiplicity

AuAu collisions at Vs_{NN}= 9.2 AGeV

Ref: Phys. Rev. C 81(2010) 24911

STAR AuAu at 9.2 GeV : consistent with SPS results. List of references for AGS and SPS data are listed in: STAR Coll. Phys.Rev. C 81 (2010) 24911

STAR Advantages:

- Similar Acceptance at all energies
- All detectors are tested and known to work very well
- Addition of Time of Flight makes
 Particle ID better
- DAQ1000 makes data taking faster

STAR capable of making best use of Beam Energy Scan Runs

How to recognize Critical Behaviour?

 Correlation length ξ related to various moments of distributions of conserved quantities like Net Baryon, Net Charge, Net Strangeness number : Higher moments are more sensitive

M. A. Stephanov, Phys. Rev. Lett. 102 (2009)032301 ; M. Asakawa et al., Phys. Rev. Lett. 103 (2009) 262301

$$\Delta N = N - \langle N \rangle \qquad \sigma^2 = \langle (\Delta N)^2 \rangle \propto \xi$$
$$S = \langle (\Delta N)^3 \rangle / \sigma^3 \propto \xi^{4.5}$$

$$\kappa = \left[\left\langle (\Delta N)^4 \right\rangle / \sigma^4 \right] - 3 \propto \xi^7$$
$$\kappa \sigma^2 \sim \chi_B^{(4)} / \chi_B^{(2)}$$

 According to QCD based model calculations: At Critical Point : ξ diverges -> Non-Gaussian Fluctuations -> κσ² and Sσ diverge

Away from CP : according to Central Limit Th. : $\kappa\sigma^2 = 1$; S σ =const.

- Models show that fluctuations in Net Proton number reflect the fluctuations in Net Baryon Number Y. Hatta et al. PRL 91(2003) 102003
- Study of Higher Moments of Net Proton Multiplicity as a function of centrality and beam energy as a probe for Critical Point

Experimental search for Critical Point

STAR Coll. Phys. Rev. Lett. 105 (2010) 22302

- First Observation of Anti-Hyper-Triton with a statistical significance of 4.2 σ.
- Photon multiplicity and rapidity distribution at forward rapidity is a measured for different centrality, colliding energy and systems.
 Centrality independent Limiting fragmentation behaviour confirmed.
- Matter at RHIC more thermalized in central collisions as compared to peripheral collisions as shown by both CGC and Glauber Model.
- NCQ Scaling observed for Multi-strange quarks and ρ^0 vector meson.
- Local Parity Violation in Strong Interactions : Results for same and opposite charge correlation presented : Models rule out detector effects for same charge correlations.
- Results from AuAu collision at 9.2 GeV presented -> STAR has taken good data in phase I of BES in 2010. Watch out for interesting results.
- Critical behaviour ruled out by Higher Moments upto μ_B < 200 MeV.

B. J. Abeley, M. M. Aggarwal, Z. Ahammed, A. V. Alakhverdvants, J. Alekseey, B. D. Anderson, D. Arkhipkin, G. S. Averichey, J. Balewski, L. S. Barnby, S. Baumgart, D. R. Beavis, R. Bellwied, M. J. Betancourt, R. R. Betts, A. Bhasin, A. K. Bhati, H. Bichsel, J. Bielcik, J. Bielcikova, B. Biritz, L. C. Bland, B. E. Bonner, J. Bouchet, E. Braidot, A. V. Brandin, A. Bridgeman, E. Bruna, S. Bueltmann, I. Bunzarov, T. P. Burton, X. Z. Cai, H. Caines, M. Calderon, O. Catu, D. Cebra, R. Cendejas, M. C. Cervantes, Z. Chajecki, P. Chaloupka, S. Chattopadhyay, H. F. Chen, J. H. Chen, J. Y. Chen, J. Cheng, M. Cherney, A. Chikanian, K. E. Choi, W. Christie, P. Chung, R. F. Clarke, M. J. M. Codrington, R. Corliss, J. G. Cramer, H. J. Crawford, D. Das, S. Dash, A. Davila Leyva, L. C. De Silva, R. R. Debbe, T. G. Dedovich, M. DePhillips, A. A. Derevschikov, R. Derradi de Souza, L. Didenko, P. Diawotho, S. M. Dogra, X. Dong, J. L. Drachenberg, J. E. Draper, J. C. Dunlop, M. R. Dutta Mazumdar, L. G. Efimov, E. Elhalhuli, M. Elnimr, J. Engelage, G. Eppley, B. Erazmus, M. Estienne, L. Eun, O. Evdokimov, P. Fachini, R. Fatemi, J. Fedorisin, R. G. Fersch, P. Filip, E. Finch, V. Fine, Y. Fisvak, C. A. Gagliardi, D. R. Gangadharan, M. S. Ganti, E. J. Garcia-Solis, A. Geromitsos, F. Geurts, V. Ghazikhanian, P. Ghosh, Y. N. Gorbunov, A. Gordon, O. Grebenyuk, D. Grosnick, B. Grube, S. M. Guertin, A. Gupta, N. Gupta, W. Guryn, B. Haag, A. Hamed, L-X. Han, J. W. Harris, J.P. Hays-Wehle, M. Heinz, S. Heppelmann, A. Hirsch, E. Hjort, A. M. Hoffman, G. W. Hoffmann, D. J. Hofman, R. S. Hollis, B. Huang, H. Z. Huang, T. J. Humanic, L. Huo, G. Igo, A. Iordanova, P. Jacobs, W. W. Jacobs, P. Jakl, C. Jena, F. Jin, C. L. Jones, P. G. Jones, J. Joseph, E. G. Judd, S. Kabana, K. Kajimoto, K. Kang, J. Kapitan, K. Kauder, D. Keane, A. Kechechyan, D. Kettler, D. P. Kikola, J. Kiryluk, A. Kisiel, S. R. Klein, A. G. Knospe, A. Kocoloski, D. D. Koetke, T. Kollegger, J. Konzer, M. Kopytine, I. Koralt, L. Koroleva, W. Korsch, L. Kotchenda, V. Kouchpil, P. Kravtsov, K. Krueger, M. Krus, L. Kumar, P. Kurnadi, M. A. C. Lamont, J. M. Landgraf, S. LaPointe, J. Lauret, A. Lebedev, R. Lednicky, C-H. Lee, J. H. Lee, W. Leight, M. J. Levine, C. Li, L. Li, N. Li, W. Li, Y. Li, Z. Li, G. Lin, S. Lindenbauh, M. A-Lisa-E. Liu, H. A., I Lu, T. Liubic, W. J. Llope, R. S. Longacre, W. A. Love, Y. Lu, T. Ludlam, X. Lud G L Ca, Y. G. Ka, D. P. Nahata, R. Mijk, O I Mal, L. K. Mangora, I. Na weiler, S. Margetis, C. Markert, H. Masui, H. S. Matis, Yu. A. Matulenko, D. McDonald, T. S. McShane, A. Meschanin, R. Milner, N. G. Minaev, S. Mioduszewski, A. Mischke, M. K. Mitrovski, B. Mohanty, M. M. Mondal, B. Morozov, D. A. Morozov, M. G. Munhoz, B. K. Nandi, C. Nattrass, T. K. Nayak, J. M. Nelson, P. K. Netrakanti, M. J. Ng, L. V. Nogach, S. B. Nurushev, G. Odyniec, A. Ogawa, H. Okada, V. Okorokov, D. Olson, M. Pachr, B. S. Page, S. K. Pal, Y. Pandit, Y. Panebratsev, T. Pawlak, T. Peitzmann, V. Perevoztchikov, C. Perkins, W. Peryt, S. C. Phatak, P. Pile, M. Planinic, M. A. Ploskon, J. Pluta, D. Plyku, N. Poljak, A. M. Poskanzer, B. V. K. S. Potukuchi, C. B. Powell, D. Prindle, C. Pruneau, N. K. Pruthi, P. R. Pujahari, J. Putschke, R. Raniwala, S. Raniwala, R. L. Ray, R. Redwine, R. Reed, H. G. Ritter, J. B. Roberts, O. V. Rogachevskiy, J. L. Romero, A. Rose, C. Roy, L. Ruan, R. Sahoo, S. Sakai, I. Sakrejda, T. Sakuma, S. Salur, J. Sandweiss, E. Sangaline, J. Schambach, R. P. Scharenberg, N. Schmitz, T. R. Schuster, J. Seele, J. Seger, I. Selyuzhenkov, P. Seyboth, E. Shahaliev, M. Shao, M. Sharma, S. S. Shi, E. P. Sichtermann, F. Simon, R. N. Singaraju, M. J. Skoby, N. Smirnov, P. Sorensen, J. Sowinski, H. M. Spinka, B. Srivastava, T. D. S. Stanislaus, D. Staszak, J.R. Stevens, R. Stock, M. Strikhanov, B. Stringfellow, A. A. P. Suaide, M. C. Suarez, N. L. Subba, M. Sumbera, X. M. Sun, Y. Sun, Z. Sun, B. Surrow, D. N. Svirida, T. J. M. Symons, A. Szanto de Toledo, J. Takahashi, A. H. Tang, Z. Tang, L. H. Tarini, T. Tarnowsky, D. Thein, J. H. Thomas, J. Tian, A. R. Timmins, S. Timoshenko, D. Tlusty, M. Tokarev, T. A. Trainor, V. N. Tram, S. Trentalange, R. E. Tribble, O. D. Tsai, J. Ulery, T. Ullrich, D. G. Underwood, G. Van Buren, M. van Leeuwen, G. van Nieuwenhuizen, J. A. Vanfossen, Jr., R. Varma, G. M. S. Vasconcelos, A. N. Vasiliev, F. Videbaek, Y. P. Viyogi, S. Vokal, S. A. Voloshin, M. Wada, M. Walker, F. Wang, G. Wang, H. Wang, J. S. Wang, Q. Wang, X. L. Wang, Y. Wang, G. Webb, J. C. Webb, G. D. Westfall, C. Whitten Jr., H. Wieman, E. Wingfield, S. W. Wissink, R. Witt, Y. Wu, W. Xie, N. Xu, Q. H. Xu, W. Xu, Y. Xu, Z. Xu, L. Xue, Y. Yang, P. Yepes, K. Yip, I-K. Yoo, Q. Yue, M. Zawisza, H. Zbroszczyk, W. Zhan, J. Zhang, S. Zhang, W. M. Zhang, X. P. Zhang, Y. Zhang, Z. P. Zhang, J. Zhao, C. Zhong, J. Zhou, W. Zhou, X. Zhu, Y. H. Zhu, R. Zoulkarneev, Y. Zoulkarneeva.

Back Up Slides

Relativistic Heavy Ion Collider

STAR EVOLUTION OF A HEAVY ION COLLISION AT RHIC

- Anisotropic flow : early expansion stage (v, v, Knudsen fitting to the identified particles)
- Particle Spectra : Properties at Chemical & Kinetic Freeze-out
- Multiplicity, Rapidity density of various species in various phase space regions and its variation with centrality, beam energy and system size : Particle Production Mechanism

Lifetime of Anti-Hyper-Triton

Particle production in Different phase space Ref: PHOBOS Collaboration PRL () ; PRL ()

• With increasing energy and increasing event centrality the total particle multiplicity increases: due to increase in the num. of participants / binary collisions and increase in the energy per participant / binary coll.

- Total N_{charge}/N_{part} increases with N_{part}
- $(dN/dy)/N_{part}$ increases with N_{part} at midrapidity; constant at forward η .

 N_{part} scaling is different in different phase space regions ->

Important to study it in each pseudo-rapidity region

Degree of thermalization: Knudsen No.

Ref: J-Y Ollitrault et. al., PLB 627 (2005) 49, PRC 76 (2007) 024905

 Transport model ->Hydro for small λ interaction length (Ref: above) • K ~ λ /R is ratio of mean free path and system size Hydrodynamic limit can only be approached asymptotically (K->0) • In low density limit v_2/ϵ

K = 0.7 from model calculations and S = $4\pi \sqrt{(\langle x^2 \rangle \langle y^2 \rangle)}$ and ε are calculated using initial conditions: we use Glauber or CGC model initial conditions Fitting the plot of v_2/ϵ with $1/S^*dN/dy$ gives σc_s

Obtaining Knudsen Number from Data

✓ All p_T integrated v_2/ϵ plotted for Glauber and CGC initial conditions: fits nicely to transport model Relation

✓ CGC gives steeper curve as compared to Glauber : Estimates the system is Closer to hydro limit!

✓ Fit parameters σ^*c_s related to η/s under model assumptions

Estimates of η/s (Viscosity/Entropy)

 η /s estimated by various Experiments & Models η /s is small and close to the Conjectured Quantum Limit of $1/4\pi$

Knudsen Fit to Charge Particle v_2/ϵ

✓ p_T integrated v₂/ε plotted for Glauber and CGC initial conditions: fits nicely to transport model Relation
 ✓ CGC gives steeper curve as compared to Glauber : Estimates the system is Closer to hydro limit!
 ✓ Fit parameters σ*c_s related to η/s under model assumptions