Y production at the STAR experiment

Petr Chaloupka

for the STAR collaboration

Czech Technical University in Prague

Outline

- Motivation: QGP and quarkonia
- The STAR experiment at RHIC
- Baseline: Y production in p+p
- Cold nuclear effects: Y production in d+Au
- Y Nuclear Modification Factor in Au+Au
- Outlook
- Conclusions

Quarkonia as a probe of QGP

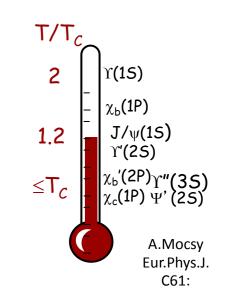
- Large masses of c, b quarks
 - created during initial stages of collision
 - calculable by pQCD

Quarkonia family:

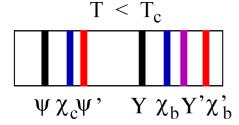
 $c-\bar{c}$: J/ψ , ψ' , χc ...

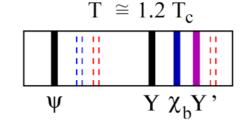
b-b: Y(1S), Y(2S), Y(3S) ...

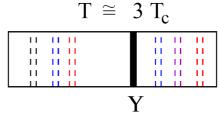
 Due to color screening of quark potential in QGP quarkonium dissociation is expected


Quarkonia as a probe of QGP

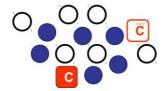
- Large masses of c, b quarks
 - created during initial stages of collision
 - calculable by pQCD
- Due to color screening of quark potential in QGP quarkonium dissociation is expected
- Sequential suppression of different states is determined by medium temperature and their binding energy
 - QGP thermometer


Quarkonia family:


 $c-\bar{c}$: J/ψ , ψ' , χc ...


b-b: Y(1S), Y(2S), Y(3S) ...

$$T_{diss}(\psi') \approx T_{diss}(\chi_c) < T_{diss}(\Upsilon(3S)) < T_{diss}(J/\psi) \approx T_{diss}(\Upsilon(2S)) < T_{diss}(\Upsilon(1S))$$

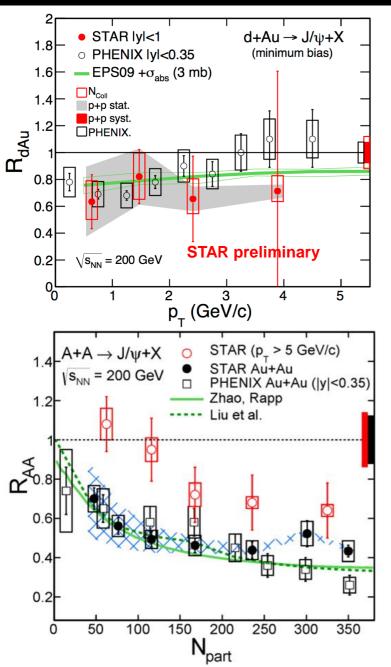


Other effects-complications

- Quarkonium production mechanism is not well understood.
 - Color-singlet vs. Color-octet?
- Observed yields are a mixture of direct production + feed down
 - E.g. J/ ψ ~ o.6 J/ ψ (Direct) + ~o.3 χ_c + ~o.1 ψ'
- Suppression and enhancement in the "cold" nuclear medium
 - Nuclear absorption, Gluon shadowing, initial state energy loss,
 Cronin effect and gluon saturation.
- Hot/dense medium effects
 - Recombination from uncorrelated charm pairs.

Common approach - RAA

- baseline p+p: test of pQCD
- "normal" suppression d+Au


$$R_{dAu} = \frac{1}{\langle N_{coll} \rangle} \frac{dN/dy^{dAu}}{dN/dy^{pp}}$$

"anomalous" suppression - Au+Au

$$R_{AA} = rac{1}{\langle N_{coll} \rangle} rac{dN/dy^{AuAu}}{dN/dy^{pp}}$$

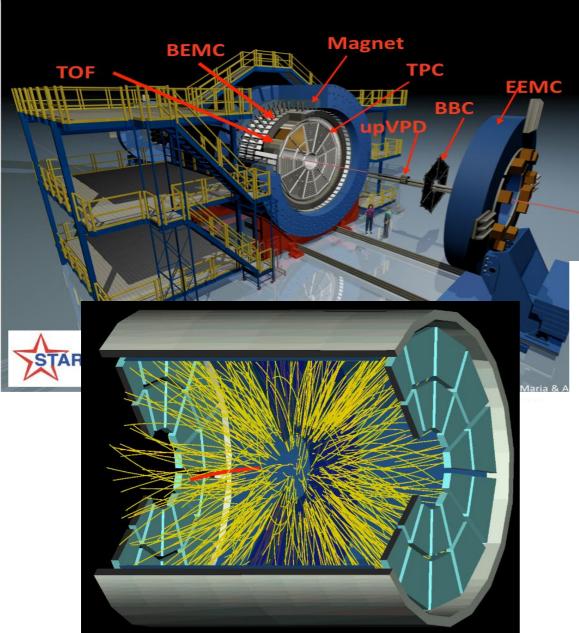
 $R_{AA} = 1$ if no modification of the production in the medium.

Message from J/ψ at 200 GeV

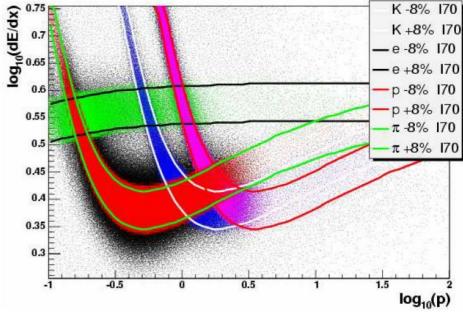
- Cold nuclear effects important for interpreting Au+Au results.
- R_{dAu} consistent with model calculations
 - shadowing from EPS09 nPDF
 - nuclear absorption: $\sigma_{abs}^{\text{\tiny J/\psi}} = 2.8mb$
- J/ψ suppression increases with collision centrality and decreases with p_T
- Data agrees with models including color screening and regeneration
 - Liu et al., PLB 678:72 (2009)
 - Zhao et al., PRC 82,064905(2010)

STAR high-p T: Phys. Lett. B 722 (2013) 55

STAR low-p T: arxiv:1310.3563

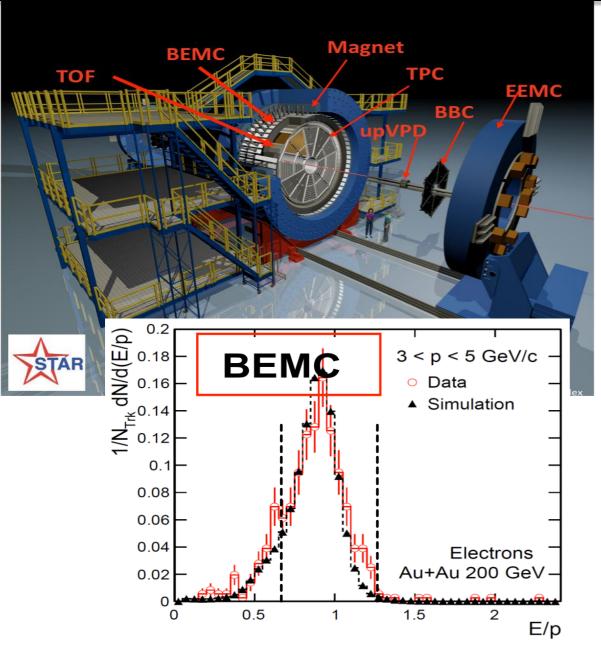

PHENIX: Phys. Rev. Lett. 98 (2007) 232301

Upsilon measurements

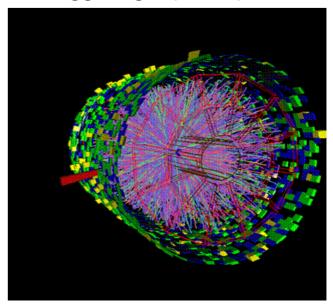

Υ -cleaner probe compared to J/ ψ

- Less feed down
- Co-mover absorption → negligible
 - $\Upsilon(1s)$: tightly bound, larger kinematic threshold.
 - Expect σ ~ 0.2 mb, 5-10 times smaller than for J/ ψ Lin & Ko, PLB 503 (2001) 104
- Recombination → negligible
 - at RHIC: σ_{cc} ~800µb >> σ_{bb} ~(1-2)µb
- Excited states: expect sequential suppression of $\Upsilon(1s)$, $\Upsilon(2s)$, $\Upsilon(2s)$ states
- Challenge: low rate, rare probe
 - Need large acceptance, efficient trigger
 - STAR upgrades

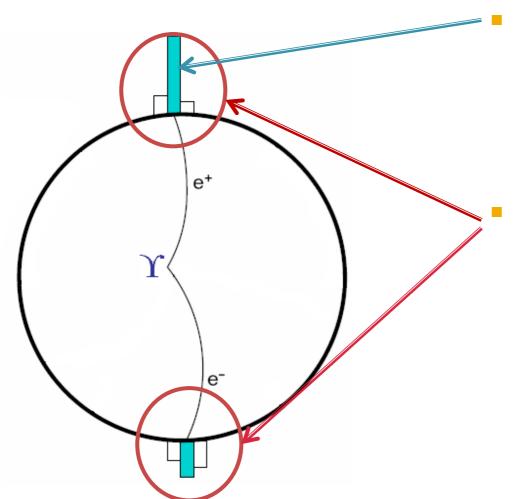
STAR experiment



- Large acceptance electron ID
- Time Projection Chamber (TPC):
 - charged particle tracking, 2π coverage in $|\eta| < 1.3$
 - dE/dx PID



Nucl. Instrum. Meth. A 558 (2006) 419

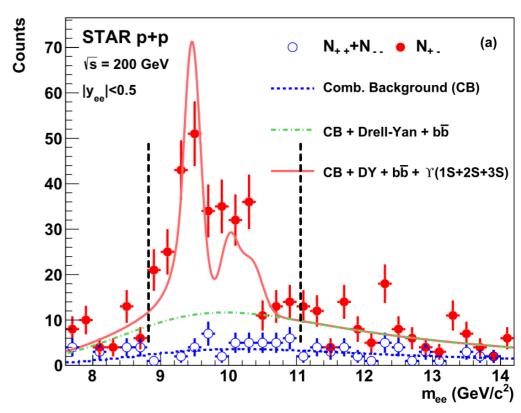

STAR experiment

- Large acceptance electron ID
- Time Projection Chamber (TPC):
 - charged particle tracking, 2π coverage in $|\eta| < 1.3$
 - dE/dx PID
- EM Calorimeter
 - 2π coverage in $|\eta| < 1$
 - Electron ID via E/p ~ 1
 - Triggering capability

Triggering on Y->e+e-decays

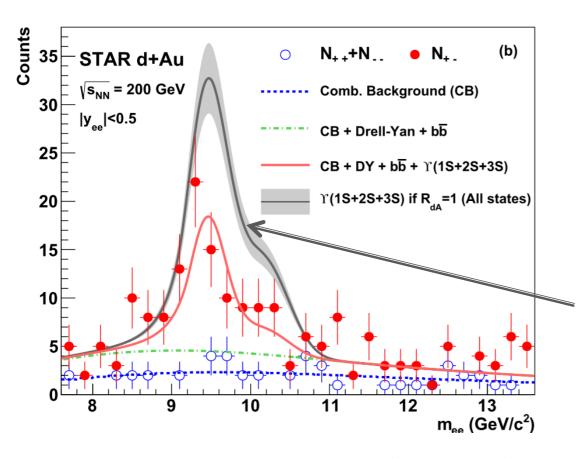
- Level o Trigger (p+p,d+Au,Au+Au):
 - Hardware-based
- Fires on at least one high tower
- Level 2 Trigger (p+p,d+Au):
- Software-based
- Calculates:
 - Cluster energies
 - Opening angle
 - Mass
- Decision in ~5 ms for slow detectors to keep / abort data

High Rejection ($\sim 10^5$ in p+p) allowed to sample full luminosity.


Υ in p+p 200 GeV from STAR

2009, $\int L dt = 20.0 \text{ pb}^{-1}$

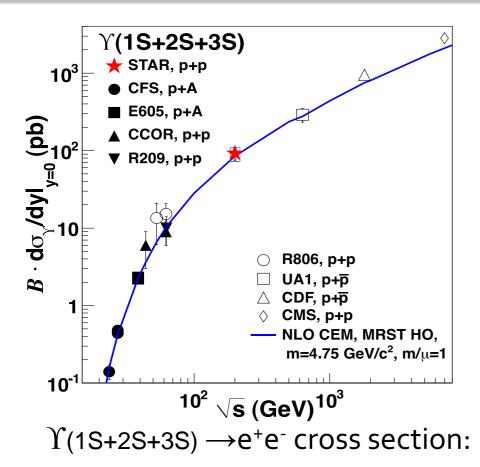
Signal extraction:


- Extracted signal for $\Upsilon(1S+2S+3S)$ and $\Upsilon(1s)$
- Two rapidity regions |y| < 0.5, 0.5 < |y| < 1
- Common fit to unlike and like-sign pairs
- Crystal-ball for Υ signals
 - momentum resolution + energy losses
- Background
 - Drell –Yan from NLO pQCD (R. Vogt)
 - bb̄ PYTHIA
- Fit used for background subtraction only

arXiv:1312.3675

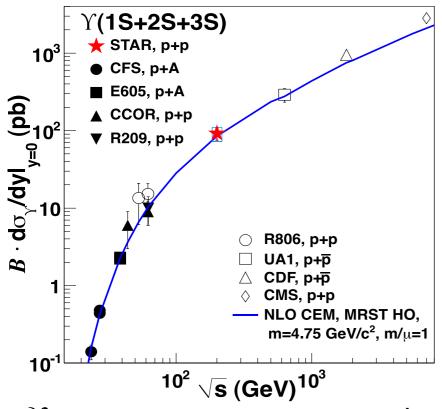
$$B_{ee} \times \frac{d\sigma}{dy}_{|y|<1}^{\Upsilon(1S+2S+3S)} = 85 \pm 9_{-16}^{+18} \,\text{pb}$$

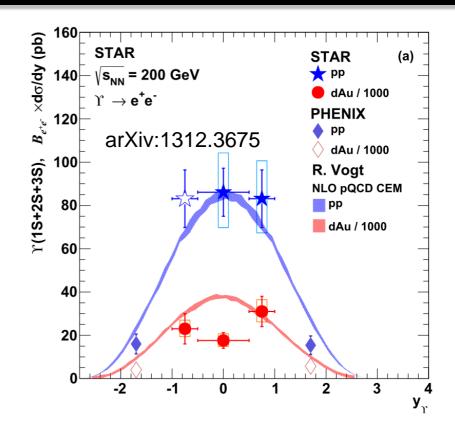
Υ in d+Au 200 GeV from STAR



2008, $\int L dt = 28.2 \text{ nb}^{-1}$

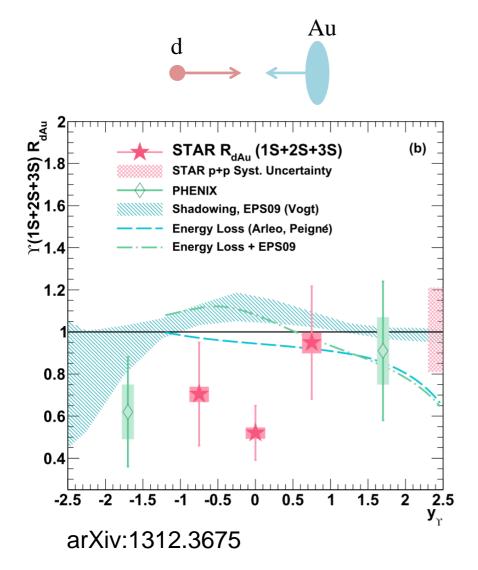
- Separate yield extraction
 - For |y|<0.5 , -1<y<-0.5, 0.5<y< 1
 - For $\Upsilon(1s)$ and $\Upsilon(1S+2S+3S)$
 - Observed suppression with respect to binary-collision scaling


$$B_{ee} \times \frac{d\sigma}{dy}_{|y|<1}^{\Upsilon(1S+2S+3S)} = 22 \pm 3_{-3}^{+4} \text{ nb}$$


Comparison to NLO pQCD

Agreement with world data trend

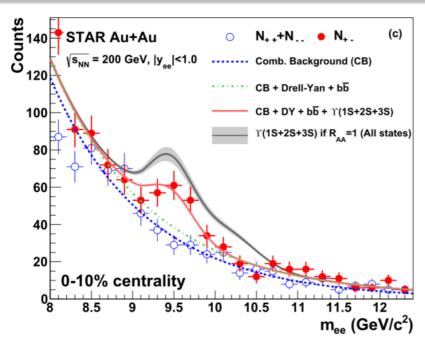
Comparison to NLO pQCD



 Υ (1S+2S+3S) \rightarrow e⁺e⁻ cross section:

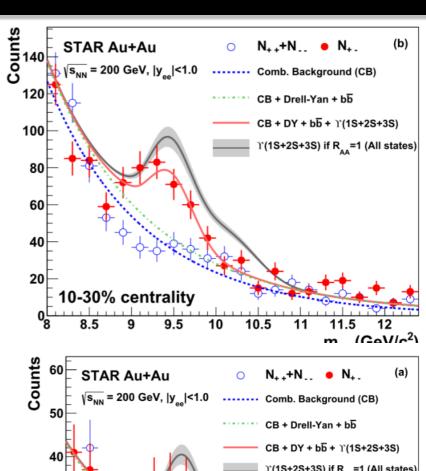
- Agreement with world data trend
- Consistent with pQCD Color Evaporation Model (CEM)
 - except for mid-rapidity d+Au
 - shadowing included for d+Au

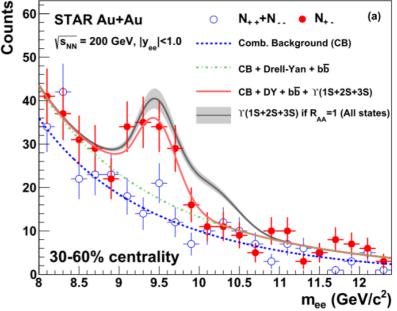
R_{dAu} and model comparison


Arleo F., Peigne , JHEP 1303 (2013) 122 arXiv:1212.0434

- Comparison to CEM calculations
 - Shadowing/Antishadowing of gluon nPDF
 - Initial parton energy loss
 - No absorption

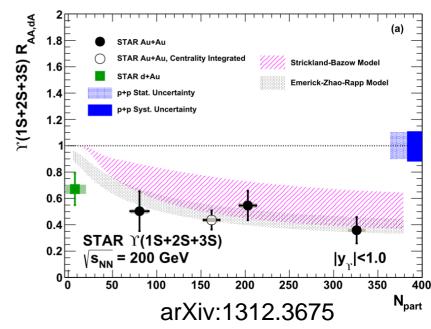
CNM effect

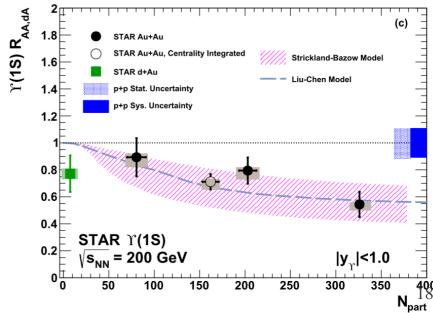

- Models expect slight enhancement at mid-rapidity.
- Data indicate suppression in CNM beyond these effects.


Yin Au+Au 200 GeV

2010, $\int L dt = 1.08 \text{ nb}^{-1}$

- Three centrality bins
- Separate yield extraction
 - For |y|<0.5 and |y|<1
 - For $\Upsilon(1s)$ and $\Upsilon(1S+2S+3S)$
- Observed suppression compared to expectations from binary-collision scaling

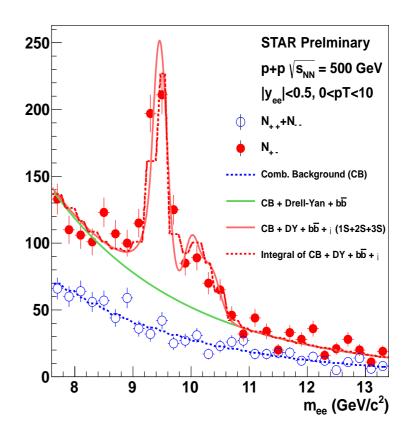


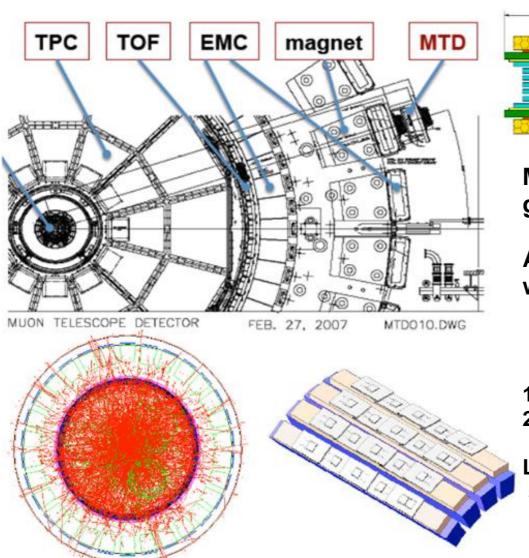

Au+Au 200 GeV: RAA

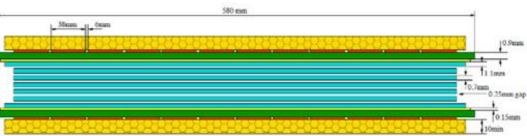
Suppression of Υ production in central Au+Au observed.

Comparison to dynamical models with feed down:

- Strickland et al., NP A 879 (2012) 25
 - anisotropic hydrodynamics
 - initial a T_o in the range of 428-442 MeV
 - No CNM effects
 - Results are consistent with complete 2S and 3S suppression
- Rapp et al., EPJ A 48 (2012) 72
 - Kinetic model
 - CNM effects absorption σ =3mb.
 - $T_0 = 330 \text{ MeV}$
- Liu et al., Phys. Lett B 697 (2011) 32
 - Initial $T_0 = 340 \text{ MeV}$
 - Dissociation of higher states
 - No CNM effects



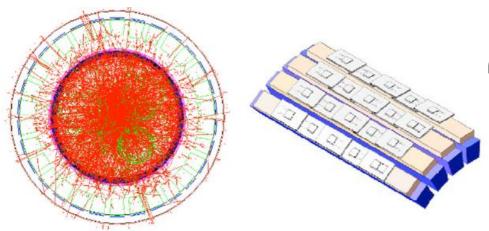

Outlook

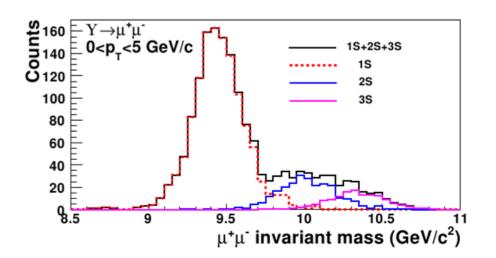

Ongoing analyses:

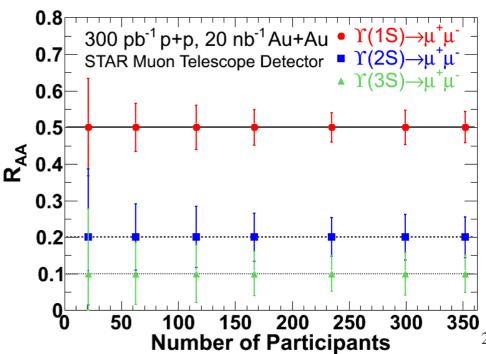
- Au+Au @ 200 GeV, 2011
 - same setup as in 2010
 - double the total luminosity ~ 2.8 nb⁻¹
- p+p @ 500 GeV, 2011
 - higher Upsilon cross section
 - approximately 22 pb⁻¹ of data
- U+U @ 193 GeV, 2012
 - non-spherical nucleus
 - higher maximum initial density
- Y-polarization and azimuthal hadron correlations
 - study production mechanism

Outlook: Muon Telescope Detector

Multi-gap Resistive Plate Chamber (MRPC): gas detector, avalanche mode


A detector with long-MRPCs covers the whole iron bars and leave the gaps inbetween uncovered. Acceptance: 45% at $|\eta|$ <0.5


122 modules, 1464 readout strips, 2928 readout channels


Long-MRPC detector technology, electronics same as used in STAR-TOF

Outlook: Y via muon channel

- advantages over electrons:
 - no γ conversion
 - less Dalitz decay contribution
 - Less affected by radiative loses
- excellent mass resolution
 - separate different Upsilon states
- trigger capability
- full installation for 2014 physics run

Summary

Measured Upsilon production in p+p, d+Au, and Au+Au collisions at 200 GeV

- Extracted signal for $\Upsilon(1S+2S+3S)$ and $\Upsilon(1S)$ states
- Rapidity dependence

Upsilon in p+p and d+Au 200GeV

- Consistent with pQCD Color Evaporation Model.
- Additional suppression from CNM effects needed for d+Au at mid-rapidity to fully reproduce Υ production
- Increased statistics from run 9 have refined our p+p measurements

Upsilon in Au+Au 200GeV

- Increasing of Υ suppression with centrality.
- Data consistent with models that contain bottomium melting in deconfined matter
- Increased Au+Au statistics from run 11 will further decrease R_{AA} uncertainties

Muon Telescope Detector upgrades.

Significant improvement of STAR quarkonium measurements

arXiv:1312.3675