The 19th International Conference on Strangeness in Quark Matter

May 17-21, 2021, sponsored by Brookhaven National Laboratory, Upton, New York

Measurements of electrons from heavyflavor hadron decays in 27, 54.4, and 200 GeV Au+Au collisions in STAR

Shenghui Zhang (for the STAR Collaboration) University of Illinois at Chicago (UIC)

Outline

- > Why heavy flavor?
- STAR experiment
- > Measurements
 - Nuclear modification factors of charm and bottom electrons in 200 GeV Au+Au collisions
 - Inclusive heavy flavor electron elliptic flow in 27 and 54.4 GeV Au+Au collisions
- Summary

Why heavy flavor?

 $m_{c,b} >> T_{QGP}$; dominantly produced in hard scattering at the early stage

- Experience all stages of QGP evolution: carry information of interaction with the medium.
- An excellent probe to study the properties of the QGP.

Energy loss of heavy quarks

- > Theoretical prediction for ΔE in medium: $\Delta E_g > \Delta E_{u,d,s} > \Delta E_c > \Delta E_b$.
- Precise measurements of c and b quark energy losses separately are crucial to test the mass hierarchy of the parton energy loss.

Shenghui Zhang

Elliptic flow (v_2) of heavy quarks star

- > D^0 meson v_2 follows light hadron trend in 200 GeV Au+Au collisions.
 - Charm quarks attain thermal equilibrium in the QGP?
- > Model calculations with T-dependent charm quark $2\pi TD_s$ can qualitatively reproduce $D^0 v_2$
- > What's charm quarks flow at lower energies?

Electrons from heavy-flavor hadron decays (HFe) are a good proxy to measure heavy flavor quarks.

Shenghui Zhang

SOM2021

STAR detector

> $|\eta| < 1$ and full azimuthal coverage

Time Projection Chamber (TPC)
▶ Momentum determination
▶ PID through dE/dx

Time of Flight (TOF)

▶ PID through the $1/\beta$

Timing resolution:~85 ps

Barrel ElectromagneticCalorimeter (BEMC)▶ PID through p/E

 Triggering on high-p_T electrons

Heavy Flavor Tracker (HFT)

 Excellent pointing resolution for displaced vertices

Shenghui Zhang

STAR detector

Shenghui Zhang

Extract $b/c \rightarrow e$ fraction

Extraction of b- and c-decayed electrons with template fit to log of 3D Distance of Closest Approach

Combined 2014+2016 RHIC Runs:

- ▶ 2014: ~0.9 B minimum bias + ~0.2 nb^{-1} BEMC triggered events
- ▶ 2016: ~1.1 B minimum bias + ~1.2 nb^{-1} BEMC triggered events

$b/c \rightarrow e$ fraction

- Enhancement of the bottom fraction is observed in 0-80% Au+Au collisions compared to that in p+p collisions and FONLL prediction.
- Sottom fraction significantly enhanced in central Au+Au collisions at 200 GeV and consistent with p+p and FONLL in peripheral collisions.

$b/c \rightarrow e R_{AA}$

DUKE: S. Cao et al., Phys. Rev. C 92, 024907 Private Communication

Bottom electron fraction used to calculate b, $c \rightarrow e$ R_{AA} with preliminary STAR inclusive HFe R_{AA}

$$R_{AA}^{b \to e} = \frac{f_{Au+Au}^{b \to e}}{f_{p+p}^{b \to e}} R_{AA}^{HFe}$$

$$R_{AA}^{c \to e} = \frac{f_{Au+Au}^{c \to e}}{f_{p+p}^{c \to e}} R_{AA}^{HFe}$$

≫ \mathbf{R}_{AA} (c→e) < \mathbf{R}_{AA} (b→e) (~3σ at 3 - 7 GeV/c).

- Solution Consistent with mass hierarchy of parton energy loss ($\Delta E_c > \Delta E_b$).
- Consistent with the DUKE model prediction.
- > Null hypothesis $[R_{AA}(B) = R_{AA}(D)]$ for $p_T(e) \in [2.5, 5.5]$ GeV/c:

$$\chi^2$$
/ndof = 8.6/2, p-value = .014

Double ratio of R_{CP}

- Calculated from centrality dependent bottom fraction.
- Large cancelation of correlated systematic uncertainties.

 \Rightarrow Constant fit to double ratio >1, significant at 3.5 σ and 4.4 σ for R_{CP}(0-20%/40-80%) and $R_{CP}(0-20\%/20-40\%)$.

 $\frac{R_{CP}^{b \to e}}{R_{CP}^{c \to e}} = \frac{f_b^{central}}{1 - f_b^{central}} \frac{1 - f_b^{peripheral}}{f_b^{peripheral}}$

Extract HFe v_2

$$N^{HF}v_2^{HF} = N^{Inc}v_2^{Inc} - N^{pho}v_2^{pho} - \sum_h f_h \cdot N^{Inc}v_2^h$$

Large data samples of 27 and 54.4 GeV Au+Au collisions collected in 2017-2018
▶ 10×more statistics compared to 39 and 62.4 GeV taken in 2010
▶ Significantly improve the precision

Phys. Rev. C 88, 014902 (2013), STAR Collaboration

 v_2^h from STAR published result.

HFe v₂

^{*} HFe v_2 in 27 and 54.4 GeV Au+Au collisions

- > HFe in 54.4 GeV Au+Au collisions have non-zero v_{2} , comparable to that at 200 GeV.
 - Charm quark interacts strongly with the medium at 54.4 GeV
- > Hint of lower HFe v_2 in 27 GeV Au+Au collisions than those at 54.4 and 200 GeV.

HFe v_2 : compare to models **STAR**

M. He et al., PRC 91,024904 (2015) T. Song et al., PRC 92, 014910 (2015)

T. Song et al., PRC 96, 014905 (2017)

- > At low p_T : TAMU and PHSD calculations are lower than v_2 at 54.4 GeV.
- At high p_T: data and model calculations are comparable considering the upper limit of estimated non-flow contribution and uncertainties.
- PHSD calculation is comparable to data with large uncertainties at 27 GeV.

v_2 : HFe and identified particles **STAR**

> HFe v_2 is comparable to those of light flavor mesons at 54.4 GeV.

> Hint of HFe v_2 at $p_T > 1$ GeV/c lower than those of light flavor mesons at 27 GeV.

Summary

$b/c \rightarrow e R_{AA}/R_{CP}$ in 200 GeV Au+Au collisions

- ▶ Less suppression for b → e than c → e (with >= 3σ significance): consistent with the mass hierarchy of parton energy loss.
- Consistent with the DUKE model prediction.

> HFe v_2 in 54.4 and 27 GeV Au+Au collisions

- ▶ HFe v_2 in 54.4 GeV Au+Au collisions is comparable to that in 200 GeV, while a hint of smaller HFe v_2 in 27 GeV Au+Au collisions.
- Model calculations are systematically lower than measured HFe v_2 at low p_T and comparable to data considering non-flow contribution and uncertainties at high p_T in 54.4 GeV Au+Au collisions.
- ▶ HFe v_2 in 54.4 GeV Au+Au collisions is comparable to those of light flavor mesons.

BACK UP

Shenghui Zhang

- Preliminary PHENIX $b, c \rightarrow e$ from Hard Probes 2018
- Excellent consistency between experiments within uncertainties

PHENIX: K. Nagashima Hard Probes 2018 DUKE: Phys. Rev. C 92, 024907 Private Communication

HF log(DCA) template model

- HF decayed electron DCA templates from EvtGen generator corrected for efficiency and momentum/position resolution determined from data
- Ground state $B/D^{+/\theta}$, B_s/D_s , and $\Lambda_{b,c}$ hadron decays simulated with all known semileptonic decays
 - Charm re-weighted with measured D^0 spectra and preliminary hadron fractions from STAR in Au+Au collisions @ $\sqrt{s_{NN}} = 200 \text{ GeV}$
 - Λ_c corrected using Λ_c/D_0 preliminary measurement from STAR + model calculations in Au+Au collisions @ $\sqrt{s_{NN}} = 200 \text{ GeV}$
 - ^D Bottom spectra from FONLL; hadron fractions from LHCb p+p measurement 60×10^{-3}

STAR

Reconstruction efficiency extraction

ТΛЕ

Reconstruction efficiency extraction

Photonic electron v₂ simulation Pink band $\pi^0/\eta/\gamma$ **Electrons** passing Full detector Photonic electron v₂ track quality cut p_T weight; simulation ϕ weight: $1 + 2v_2 \cos 2(\phi - \Phi_2)$ Blue band Tagging electrons by reconstructed electron v₂ reconstruction method ×°^{0.15} Sample random event plane Lange and a 0.1 Au+Au 54.4 GeV Au+Au 27 GeV 0-60% 0-60% 0.05 - Data: e^{reco} - Data: e^{reco} **Reconstructed electron** MC: e^{reco} MC: e^{reco} v_2 from simulation is MC: e^{pho} MC: e^{pho} STAR preliminary STAR preliminary consistent with data. n 0.5 0.5 1.5 1.5 p_{_} [GeV/c] ´p_{_} [GeV/c]

Shenghui Zhang

STAR

Au+Au 200 GeV NPE

STAR. PRC 95, 34907 (2017)