Heavy Flavor Tracker at the STAR Experiment

Miroslav Simko

for the STAR Collaboration

Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague

February 2 – 6, 2015

Outline

- Physics of the Heavy Flavor Tracker
- STAR HFT
 - 3 subdetectors
- Pixel Detector
 - First MAPS in a collider experiment
- HFT status and performance
- Summary

ICPAQGP 2015 Kolkata

- 4 layers of silicon detectors
- 3 subdetectors

1200 tons

Physics motivation

- Heavy flavor: Particles containing b and c quarks
 - $m_{b,c} \gg T_c$, Λ_{QCD} , $m_{u,d,s}$
 - Is produced in the initial hard scatterings

Excellent probe to QGP

- However, hard to perform a direct reconstruction
 - Low yields compared to light flavor particles
 - Large combinatorial background
- Decay outside of the primary vertex ⇒ precision secondary vertex finder is an important tool to study open HF physics

How Heavy Flavor Tracker helps

Examples of displaced heavy flavor vertices

- $D^0 \rightarrow K^- \pi^+$ BR = 3.89%
- $\Lambda_{\rm c}^+ \rightarrow {\rm pK}^- \pi^+$ BR = 5%
- B mesons $\rightarrow J/\psi + X$ or e + X

 $c\tau \sim 120 \,\mu \mathrm{m}$ $c\tau \sim 60 \,\mu \mathrm{m}$ $c\tau \sim 500 \,\mu \mathrm{m}$

Heavy Flavor measurements with HFT

- Total charm yield
- R_{CP} and R_{AA}
- v_2
- Measuring charm and beauty

Simulation of the separation of prompt J/ψ (black) vs J/ ψ from B decay (red)

- \rightarrow charmonium suppression and coalescence
- \rightarrow energy loss of the heavy flavor
- \rightarrow degree of thermalization with light flavor
- \rightarrow probing the medium with different mass of quarks

Silicon Strip Detector (SSD)

- Double sided silicon strip detector with 95 μm pitch
- Upgraded existing detector with new faster electronics
- $\sigma_{r\phi} = 20 \ \mu\text{m}$, $\sigma_z = 740 \ \mu\text{m}$
- Radius 22 cm
- Radiation length 1% X₀
- From 200 Hz to 1 kHz
- Upgraded cooling system air cooled

Intermediate Silicon Tracker (IST)

- Single sided silicon pad detector
- Radius 14 cm
- Pitch 600 $\mu m \times 6 \ mm$
- Radiation length < 1.5% X₀

Pixel detector (PXL)

- First MAPS based detector at a collider experiment
- Sensor developed at IPHC Strasbourg
- MAPS sensors with 20.7 μm pitch
- Radii 2.8 cm and 8 cm
- Radiation length:
 - < 0.4% *X*⁰ inner layer
 - < 0.5% *X*⁰ outer layer
- Pointing resolution ($12\oplus 24 \text{ GeV}/p_T c$)µm
- 356 M pixels on $\sim 0.16~m^2$ of silicon

PXL architecture

- 10 sectors with 4 ladders
- Innovative insertion mechanism allows for rapid (1 day) replacement
- Detector is inserted along rails and then locks in "kinematic mounts"
- 10 sensors/ladder 2 × 2 cm each

Pixel MAPS sensors

- Ultimate-2
 - 960 x 928 array
 - Pixel pitch 20.7 μm

- Air cooling
- Integration time 185.6 μs
- Developed by the PICSEL group at IPHC Strasbourg

Pixel installation

- After installation:
 - All 400 sensors working
 - < 2k bad pixels
 - Noise rate tuned for $\sim 1.5 \times 10^{-6}$ per sensor (for most sensors)

PXL assembled in the clean room at BNL

HFT Status

- SSD and IST installed in fall 2013
- PXL installed in January 2014
- February 2014: commissioning including cosmic data taking and low luminosity
- More than 1.2 billion events taken
- HFT ready for 2015 run and has taken cosmic data

Alignment for run 14

- Half-to-half pointing residuals
- $\sigma \sim 25 \ \mu m$ inner for the inner layer and $\sigma \sim 50 \ \mu m$ for the outer layer

A cosmic event in PXL plus IST

Preliminary DCA pointing resolution

- PXL preliminary halfto-half
- $\sigma < 25 \ \mu m$ inner layer

STAR

- DCA pointing resolution $\sim 30 \ \mu m$

Conclusion and outlook

- HFT was successfully installed for the RHIC 2014 run
- The pointing resolution meets its design goals
- HFT is ready for 2015 run
- MAPS technology seems to be working well for the VERTEX detectors
- More MAPS based vertex finders are soon to come ... including the ITS upgrade at ALICE

Thank you for your attention

Backup

February 2 – 6, 2015

ICPAQGP 2015 Kolkata

18/17

Silicon Strip Detector (SSD)

	INSULATOR Si O ₂ p ⁺	ARTICLE 95 μm	MICROSTRIPS
300 µ m			SIDE "n"
+	V ~ 40 volts Si implant	n+	BULK Silicon "n" type ANGLE STEREO

SSD radius	22 cm
SSD length	106 cm
$ \eta $ coverage	< 1.2
Number of ladders	20
Number of wafers per ladder	16
Total number of wafers	320
Number of strips per wafer side	768
Number of sides per wafer	2
Total number of channels	491520
Silicon wafer size	$75 \times 42 \text{ mm}$
Silicon wafer sensitive size	$73 \times 40 \text{ mm}$
Silicon thickness	300 µm
Strip pitch	95 µm
Stereo angle	35 mrad
R- ϕ resolution	20 µm
Z resolution	740 µm

SSD readout refurbishment

- Upgrade from 200 Hz to 1 kHz
- New
 - 40 ladder cards on detector
 - 5 RDO cards
 - 5 Fiber-to-LVDS boards

Fiber-to-LVDS

RDO board – adapted from PXL

Ladder cards

21/17

Intermediate Silicon Tracker (IST)

Radius	14 cm
Length	50 cm
φ-Coverage	2π
lηl-Coverage	≤1.2
Number of ladders	24
Number of hybrids	24
Number of sensors	144
Number of readout chips	864
Number of channels	110592
R- ϕ resolution	172 μm
Z resolution	1811 μm
Z pad size	6000 μm
R-\ pad size	600 µm

Pixel detector (PXL)

DCA pointing resolution	$(12 \oplus 24 \text{ GeV}/p_T c)$
Radii	Layer 1 at 2.8 cm Layer 2 at 8 cm
Pixel size	20.7 μm × 20.7 μm
Hit resolution	3.7 μm
Position stability	6 μm RMS (20 μm envelope)
Radiation length	Layer 1: $X/X_0 < 0.4\%$ Layer 2: $X/X_0 < 0.5\%$
Number of pixels	~ 356 M
Integration time (affects pileup)	185.6 ms
Radiation environment	20 – 90 kRad/year 2 × 10 ¹¹ to 10 ¹² 1 MeV n eq/cm ²
Installation time	~ 1 day

PXL readout chain

Configuration, etc.

2/2/2015

ICPAQGP 2015 Kolkata

Radiation damage in 2014 and remediation

- After the installation all 400 sensors working
- First damage found out in 14.5 GeV run after several beam loss events
- The damage seems to be radiation related and appears to be from latch-up events
- Measures taken:
 - Latch-up threshold decreased from 400 mA over operating current to 120 mA over operating current
 - Cycle digital power once every 15 min
 - HFT is switched off when the collision rate > 40 kHz
- Further damage has been stopped
- New detector for 2015 has only 4 bad sensors out of 400
- Is protected from the beginning

Layer	Inactive
PXL inner	14%
PXL outer	1%
IST	4%

