

Zhangbu Xu

For the STAR Collaboration

- 1. Why strange is still interesting
- 2. Strangeness in RHIC Beam Energy Scan
- 3. Strangeness in Chiral Symmetry Restoration
- 4. Hypertriton
- 5. What is next? (ideas)

The International Workshop on the Future Potential of High Intensity Accelerator for Particle and Nuclear Physics 2016 NAT

Beam Energy Scan Phase I (2010-2014)

STAR 2005 Whitepaper: Nucl. Phys. A 757 (2005) 102 Extend RHIC Au+Au measurements down toward SPS energy, search for possible indicators of a rapid transition in measured properties. Chaired by S. Vigdor (IU)

2008 RHIC 3000events at 9.2GeV, Phys. Rev. C 81 (2010) 24911

https://drupal.star.bnl.gov/STAR/starnotes/public/sn0598

Mapping the QCD Phase Diagram

Hints of new behavior in first Beam Energy Scan Beam Energy Scan Phase 2 (BES II): from hints to quantitative understanding

STAR Detector System 15 fully functioning detector systems

X10³ increases in DAQ rate since 2000, most precise Silicon Detector (HFT 2014-16) **4**

Multiple-fold correlations for identified particles!

Invariant Yield

Putting data points on the phase diagram

Chemical Freeze-out in Heavy-Ion collisions coincides with Lattice Phase Boundary

Stopping, Thermalization and Absorption

Important to understand initial stopping and pair production vs final state 7.7GeV COM energy => Fixed target Energy **31GeV proton** beam p, phi, Lambda, Xi, Omega (antiparticle) production in p+A

Beam Energy Scan Program:

- Turn off QGP Signatures triangle flow (v₃) in peripheral at low energy consistent with zero Hadron suppression at high p_T
- Search for critical point net-proton Kurtosis possibly not Poissonian and grow with accepted rapidity window
- AND...

10

STAR, PRC92(2015)

QCD phase transition is a chiral

phase transition

- 1. Charge separation (14.5GeV)
- 2. Bulk charge dependence of $\pi^{\pm} v_2$
- 3. Low-mass dilepton excess
- 4. Global polarization of hyperons

Editors' Suggestic

Observation of Charge Asymmetry Dependence of Pion Elliptic Flow and the Possible Chiral Magnetic Wave in Heavy-Ion Collisions

L. Adamczyk *et al.* (STAR Collaboration) Phys. Rev. Lett. **114**, 252302 (2015) – Published 26 June 2015

A possible signature of chiral symmetry restoration, in the form of a chiral magnetic wave in the quark-gluon plasma, has been observed in heavy-ion collisions at RHIC. Show Abstract +

Strangeness distinguish models

"... We demonstrate that the STAR results can be understood within the **standard viscous hydrodynamics** without invoking the CMW..."

"... the slope r for the kaons should be negative, in contrast to the pion case, and the magnitude is expected to be larger... Note that in these predictions are integrated over $0 < pT < \infty$. In order to properly test them, a wider pT coverage is necessary..."

— Y. Hatta et al. Nuclear Physics A 947 (2016) 155

QCD phase transition is a chiral

phase transition

- 1. Charge separation (14.5GeV)
- 2. Bulk charge dependence of $\pi^{\pm} v_2$
- 3. Low-mass dilepton excess
- 4. Global polarization of hyperons

Penetrating Probes

Low-mass di-electron production

- Measured in many systems (Au+Au, U+U, p+p) and different energies (19.6, 27, 39, 62, 200 GeV)
- Quantifying how vector mesons evolve in the medium
- The yields probe timescale of collisions

QCD fluid responds to external field

 $\overline{\mathsf{P}}_{\mathsf{V}}(\%)$ 8 Au+Au 20-50% 6 Positive Global Hyperon Polarization 4 indicating a spin-orbit (Vortical) coupling Current data not able to distinguish 2 sum Lambda/AntiLambda polarization difference, (potentially) Direct measure of 0 卣 **STAR Preliminary** Magnetic Field effect P_M (%) Need >x10 more data ÷. ц, -1 difference -2 -3 10² 10 √s_{NN} (GeV)

Hypernuclei

★ A beautiful event in the STAR TPC that includes the production and decay of a antihypertriton candidate. (Data taken from Run4 Au+Au 200GeV MB collision)

The mesonic decay of hypertriton

Kamada et al., PRC 57, 1595(1998)

TABLE I. Partial and total mesonic and nonmesonic decay rates and corresponding lifetimes.

Channel	$\Gamma [\text{sec}^{-1}]$	Γ/Γ_{Λ}	$\tau = \Gamma^{-1} [\text{sec}]$
³ He $+\pi^-$ and ³ H $+\pi^0$	0.146×10^{10}	0.384	0.684×10^{-9}
$d+p + \pi^-$ and $d+n+\pi^0$	0.235×10^{10}	0.619	0.425×10^{-9}
$p + p + n + \pi^{-}$ and $p + n + n + \pi^{0}$	0.368×10^{8}	0.0097	0.271×10^{-7}
All mesonic channels	0.385×10^{10}	1.01	0.260×10^{-9}
d+n	0.67×10^{7}	0.0018	0.15×10^{-6}
p + n + n	0.57×10^{8}	0.015	0.18×10^{-7}
All nonmesonic channels	0.64×10^{8}	0.017	0.16×10^{-7}
All channels	0.391×10^{10}	1.03	2.56×10^{-10}
Expt. [6]			$2.64 + 0.92 - 0.54 \times 10^{-10}$
Expt. (averaged) [11]			$2.44 + 0.26 - 0.22 \times 10^{-10}$

 $\frac{1}{\tau} = \sum_i \frac{1}{\tau_i}$

Decay Branching Ratios and lifetime are sensitive to binding energy and interaction length

In experiment, the 2-body helium3 channel and the 3-body deuteron channel can both be measured in Heavy-ion collisions

The largest hypertriton sample

★ Statistics: Run7+Run10+Run11 MB+Central, ~610M events

★ Signal observed from the data (bin-by-bin counting [2.986,2.996]GeV): 602±63, the largest hypertriton sample ever created

Background estimation: rotated background

Measured Branching Ratio

Branching ratio can be calculated by decay law :

$$T(t) = N_0 B r e^{-\frac{t}{\tau}}$$

*Physical Review C.57.1595(1998)

New hypertriton lifetime result

Implications from shorter lifetime

Lifetime of ${}^3_{\Lambda}$ H in 2015

Combination with the most recent available lifetime results:

- Hypertriton lifetime seems to experimentally systematically lower than expectation
- Little data and understanding of the three-body system

- ▶ PDG says need to rescale errors if $\chi^2 > 1$
 - initial $\chi^2 = 1.18$, 197.5^{+12.4}_{-11.2} ps
 - ▶ scaled χ^2 =0.98, 195.9^{+13.8}_{-12.5} ps
- Upper Limit at 95% : 223.9 ps & at 99% : 234.0 ps
- Bayesian :

C. Rappold

- $195.9^{+19.7}_{-18}$ ps & Upper Limit 95% : 229 ps
- Bayes Factor : $B_{10} = 3.0$ Status of hydrogen hypernuclear Lifetime

Theoretical value: 256ps L lifetime: 261ps

08/09/2015 12 / 14

Look into the future (-2020)

STAR BES-II x10 more data at each energy

Fixed Target Program access energies at the peak of hypernucleus production Rate >~1000Hz

A. Andronic, et al. PLB (2011)

What is STAR iTPC upgrade?

The STAR Upgrades and BES Phase II

inner TPC upgrade

Endcap TOF

Major improvements for BES-II

iTPC Upgrade:

- Rebuilds the inner sectors of the TPC
- Continuous Coverage
- Improves dE/dx
- Extends η coverage from 1.0 to 1.5
- Lowers p_T cut-in from 125 MeV/c to 60 MeV/c

EndCap TOF Upgrade:

- Rapidity coverage is critical
- PID at η = 0.9 to 1.5
- Improves the fixed target program
- Provided by CBM-FAIR

EPD Upgrade:

Improves trigger

Event Plane Detector

- Reduces background
- Allows a better and independent reaction plane measurement critical to BES physics

Enhance Di-electron and strangeness

measurements

> Systematically study di-electron continuum from $\sqrt{S_{NN}}$ = 7.7 – 19.6 GeV

- Inner Time Projection Chamber (iTPC) upgrade: reduce systematic and statistical uncertainties
- \succ Distinguish models with different ρ -meson broadening mechanisms
- Study the total baryon density effect on LMR excess yield in BESII
- Strangeness production (usually low-pt pions) reconstruction efficiency improve by >x2

RHIC has been adaptable to science needs

2010- 2013	2014	2015	2016	2017	2018	2019	2020	2022+
Au+Au p+p	Au+Au	p+p p+A	Au+Au d+Au	p+p Au+Au	Isobar Au+Au	Au+Au	Au+Au	Au+Au pp,pA
∆G, QGP property	Charm flow	Ref. A _N	D _c , Λ _c Υ, Jets	Fc sign	СМЕ, ∧↑	Critical Point, Phase Transition		Jets, Υ forward A_N
BES-I	200, 14.5	200	200- 19.6	500, 62.4	200, 27	BES-II 11-20	BES-II 7-11	200

BES-I

BES-II

Expand to include several programs: p+A in run 15, pp500 in run17, Isobar (Zr, Ru-96) in run 18 BES-II more compelling, detector and machine upgrades in 2018 Future high-luminosity jets and Upsilon in 2020+ 3+1D hydrodynamics and Unique Cold QCD (DY) portal to EIC

Discovery potential at EIC and JPARC

Heavy-flavor states

Heavy-flavor hypernuclei

Predicted to exist (70's) Cannot be produced in pp, ep EIC enough energy for charm and High-Intensity p+A fixed target? Vertex detector at Fragmentation Displace vertex: 3cm

Summary

- Strangeness and hypernuclei are still very exciting topics
- Strangeness is essential in determining
 - the data point locations in QCD phase diagram
 - Degree of thermalization from collisions to QGP
 - Final-state absorption of antibaryons
 - Chiral Magnetic Wave (test models)
 - ✤ Global Polarization and Vorticity of the QGP fluid
- Hypertriton is of particular interest:
 - Few-body Λ-N interaction and exotic particles
 - Lifetime measurements systematically low
- Looking forward to BES-II at RHIC, CBM, NICA and JPARC Programs