

Studying the relative bottom contribution via electron-tagged jets in STAR

André Mischke

Universiteit Utrecht

for the STAR Collaboration

Outline

- Motivation
- Correlation method
- Gluon splitting rate at RHIC
 - D* in jets
 - comparison to MC@NLO simulations
- Data analysis in p+p collisions
 - e-D⁰ azimuthal correlations
 - relative bottom contribution
- Summary and conclusions

Andre Mischke (UU)

Motivation

- Study dynamical properties of QGP: initial gluon density, drag coefficient
- Heavy quarks
 - well calibrated probes
 - lose less energy due to dead-cone effect
- Surprise in central Au+Au: Heavy-flavor decay electrons are strongly suppressed
- Models implying D and B energy loss are inconclusive yet
- pQCD: Large uncertainty on D/B crossing point
- Goals
 - access to underlying production mechanisms
 - separate D and B contribution experimentally

Andre Mischke (UU)

Andre Mischke (UU)

Correlation method

Identification and separation of charm and bottom production processes using their decay topology and azimuthal angular correlation of their decay products

- electrons from D/B decays are used to trigger on charm/bottom quark pairs

- associate D⁰ mesons are reconstructed via their hadronic decay channel (probe)

Hard Probes – A Toxa (Spain) – 6/16/2008

trigger side

9.0%

1000000

charm

Electron tagged correlations: bottom production π^{+}

B

Charge-sign requirement on trigger electron and decay Kaon gives additional constraint on production process

unlike-sign pairs \rightarrow away-side correlation

 π

like-sign pairs \rightarrow near-side correlation

K۰

D0

D*0

Near- and away-side correlation peak expected for B production

B+

Leading order PYTHIA simulations

- Near-side
 - B decays
- Away-side
 - charm flavor creation (dominant)
 - small bottom contribution

- Away-side
 - charm flavor creation (dominant)
 - small charm contribution

Andre Mischke (UU)

NLO process: Gluon splitting

- FONLL/NLO calculations only give single inclusive distribution
 → no correlations
- **PYTHIA** is not really adequate for NLO predictions

- STAR measurement of D^* in jets \rightarrow access to charm content in jets
- Gluon splitting rate consistent with pQCD calculation

 \rightarrow Gluon splitting contribution to total charm production ~6%

A Toxa (Spain) – 6/16/2008

Charm production in MC@NLO

- NLO QCD computations with a realistic parton shower model
- Remarkable agreement of awayside peak shape between the two models
- Near-side: GS/FC = (6.5±0.5)%
- \rightarrow small gluon splitting contribution
- \rightarrow in agreement with STAR measurement

MC@NLO computation

- S. Frixione, B.R. Webber, JHEP 0206 (2002) 029 - S. Frixione, P. Nason, and B.R. Webber, JHEP 0308 (2003) 007

e-D⁰ correlation analysis

Andre Mischke (UU)

Andre Mischke (UU)

Andre Mischke (UU)

Electron identification

after cut on *p/E* and shower shape

well developed shower

 $> 0. < p/E_{tower} < 2.$

> 3.5 < dE/dx < 5.0 keV/cm (p_T dependent)

• High electron purity up to high p_T

 \rightarrow Clean electron sample

Hard Probes - A Toxa (Spain) - 6/16/2008

[•] Quality cuts on EMC point and TPC track of particles

Photonic electron background

- Most of the electrons in the final state are originating from other sources than heavy-flavor decays
- Dominant photonic contribution
 - γ conversions
 - π^0 and η Dalitz decays
- Exclude electrons with low invariant mass $m_{inv} < 150 \text{ MeV/c}^2$
- \rightarrow Non-photonic electron excess at high p_T
- Photonic background rejection efficiency is ~70%

Andre Mischke (UU)

K- π invariant mass distribution

• S/B = 14% and signal significance = 3.7

Andre Mischke (UU)

TÁR

Azimuthal correlation of non-photonic electrons and D⁰ mesons

- First two heavy-flavor particle correlation measurement at RHIC
- Near- and away-side correlation peak yields are about the same

Andre Mischke (UU)

Heavy-flavor particle correlations

e-D⁰ correlations

e-h correlations

- Different kinematics for D and B decays
- Exploit different fragmentation of associated jets

Andre Mischke (UU)

Relative $B \rightarrow e$ contribution

 Good agreement between different analyses

 Data consistent with FONLL calculations within errors

 \bullet Comparable D and B contributions to non-photonic electrons at high $p_{\rm T}$

Together with Au+Au measurement: Hint for significant suppression of electrons from bottom decays in the medium?

Andre Mischke (UU)

Summary and conclusions

- First two heavy-flavor particle correlation measurement in p+p collisions at RHIC
- "D* in jets" measurement + MC@NLO simulations: Small gluon-splitting contribution
- Azimuthal correlation of non-photonic electrons and D⁰ mesons
 - access to production mechanisms
 - \rightarrow allows separation of charm and bottom production processes
 - efficient trigger on heavy-quark production events
 - significant suppression of the combinatorial background in D⁰ reconstruction
- Bottom contribution to non-photonic electrons is significant at $p_T > 5$ GeV/c (~50%)
- Correlation method is a powerful tool for comprehensive energy-loss measurements of heavy quarks in heavy-ion collisions (e.g. I_{AA})

Andre Mischke (UU)

The STAR collaboration

Andre Mischke (UU)

Backup slides

Andre Mischke (UU)

D⁰D^{*-} cross section measurement at the Tevatron

B. Reisert et al., Beauty 2006, Nucl. Phys. B (Proc. Suppl.) 170, 243 (2007)

- Within errors near- and away-side yields are the same \rightarrow gluon splitting as important as flavor creation
- Near-side yield: PYTHIA underestimates gluon splitting

Andre Mischke (UU)

PYTHIA event generator

Parameter settings

- version: 6.222 (Jan. 2004)
- MSEL = 4 or 5
- PMAS(4,1) = 1.3 or 4.5
- PARP(91) = 1.5
- PARP(31) = 3.5
- MSTP(33) = 1
- MSTP (32) = 4
- MSTP(51) = 7
- PARJ(13) = 0.594
- CKIN(3) = 1
- PARP(67) = 4
- MSUB(81)= MSUB(82)= MSUB(84)= 1

charm or bottom $m_c \text{ or } m_b$ $< k_T >$ k factor common k factor Q^2 scale CTEQ5L PDF D/D* spin factor

ISR+FSR sub-processes

- k_t ordering in shower
- String hadronization
- default FF (Peterson)
- B mixing included

$$\sigma_{c\bar{c}}^{PYTHIA} = 232\,\mu b$$
$$\sigma_{b\bar{b}}^{PYTHIA} = 2.13\,\mu b$$

MC@NLO event generator

- Version 3.3 (Dec. 2006)
- CTEQ6M PDF
- HERWIG event generator (version 6.510, Oct. 2005)
 - parton showering
 - hadronization
 - particle decays
- Parameter settings
 - $> m_c = 1.55 \text{ GeV/c}^2$
 - ≻ m_b = 4.95 GeV/c²

<u>HERWIG</u>

- Angular-ordered shower
- Cluster hadronization

$$\sigma_{c\bar{c}}^{MC@NLO} = 184 \mu b$$
$$\sigma_{b\bar{b}}^{MC@NLO} = 1.60 \mu b$$

Model comparison

Andre Mischke (UU)

D⁰ yield versus $\Delta \phi(e, hadron pair)$

- Calculate $\Delta \phi$ between nonphotonic electron trigger and hadron pair p_{τ}
- Extract D⁰ yield from invariant mass distribution for different $\Delta \phi$ bins

Andre Mischke (UU)

 $\Delta \phi$ bin

TÁR

 p_y

Hard Probes - A Toxa (Spain) - 6/16/2008

D* in jet measurement

Magnitude at high z region is suppressed due to trigger, and it is consistent with MC simulation for only direct flavor creation process

> Excess at low z region is expected to be from gluon splitting process

Andre Mischke (UU)