

Heavy Quark Results from STAR

Xin Dong (for the STAR Collaboration)

Lawrence Berkeley National Lab

Outline

- **≻**Introduction
- >Recent results
 - charm total cross section
 - charm transverse momentum spectra
 - heavy quark correlations
 - glance at Run 8 (y2008) data
- ➤ Summary & Outlook

Heavy Quarks – Probe & Quantify QGP

Heavy!

- Heavy quarks created at early stage of HIC
 - → total yields scaled by N_{bin}
- Sensitive to the partonic rescatterings
- Collectivity, flow
- → indication of light flavor thermalization (to some degree)

How to measure?

Reconstruction from hadronic decay channels

$$D^0 \to K^- \pi^+ (3.8\%)$$
 $c\tau = 123 \mu m$
 $D^{*+} \to D^0 \pi_s^+ (68\%), D^0 \to K^- \pi^+ (3.8\%)$

Combinatorial background!
Secondary vertex reconstruction will help significantly

$$D^0 \rightarrow e^+ + X \quad (6.7\%)$$

 $D^+ \rightarrow e^+ + X \quad (17.2\%)$

backgrounds (conversions and light hadron decays)

$$D^0 \to \mu^+ + X \quad (6.5\%)$$

backgrounds (light hadron decays)

Mixture of charm (mesons/baryons) and bottom decays

STAR Detector

TOF (+dE/dx) Electron PID (~0.2 – 10 GeV/c) Muon PID at low p_T (~0.2 GeV/c)

Large acceptance in mid-rapidity Correlation measurements

Open Heavy Quark Measurements @ STAR

<u>Transverse momentum spectrum</u>

	D reconstruction non-photonic electrons		$low p_T$ muons			
Sub-systems		TPC	TPC+TOF	TPC	TPC+EMC	TPC+TOF
p_T coverage (GeV/c)		$\sim 0.1 - 3$	$\sim 0.8 - 4$	$\sim 2-4$	$\sim 2-10$	$\sim 0.17 - 0.25$
200 GeV	p + p	_	✓	✓	✓	_
	d + Au	✓	✓	✓	✓	_
	Cu + Cu	√	_	_	√	_
	Au + Au	√	√	_	✓	√

- cross section
- flow characteristics
- energy loss in A+A collisions

All measurements are selfconsistent within STAR.

Correlations

✓ e-h/D⁰ in p+p - bottom contribution to non-photonic electrons

✓ D*-jets in p+p - charm production through gluon jets

✓ e-h in A+A - medium response with heavy quark triggers

Direct charm hadron reconstruction

Current TPC track projection cannot allow us to topologically reconstruct D⁰. Large statistics to overcome the huge combinatorial background.

Electrons and photonic background

Electron PID:

TPC+TOF or TPC+EMC covers $0.2 \sim 10$ GeV/c in p_{T} , purity > 95%

Photonic background:

Reconstruct the conversions and π^0 Dalitz decays benefiting from the large acceptance of the TPC. Efficiency ~ 70-80% at p_T > 4 GeV/c.

Non-photonic electrons

p+p, d+Au & Au+Au 200 GeV
Non-photonic electron spectra from
TPC+TOF & TPC+EMC are consistent
in the overlap region.

Muons at low p_T

Fix total charm cross section Vary power-law <p_→>

Muon yield at low $p_{\scriptscriptstyle T}$ is more sensitive to the total charm yield less sensitive to the charm spectrum shape.

X-sec

Phys. Rev. Lett. 94 (2005) 062301

arXiv: 0805.0364 A. Shabetai, QM08

- ➤ Combined fit for D⁰+e+µ spectra.
- ➤ Charm X-sec is approximately scaled by N_{bin}.
- ➤ Big uncertainties in both experimental and theoretical results.
- ➤ STAR centroid ~ 2 x PHENIX centroid

Precision measurement of X-sec needed -> calibration for charmonium results

Charm Flow?

Temperature $\mathsf{T}_{\!\!\! \, \mathrm{to}}$ (GeV) 0.2 $\phi(s\overline{s})$ 0.18 Chemical freeze-out temperature T_{ch} 0.16 $\Omega(sss)$ 0.14 0.12 STAR Preliminary 0.1 AuAu Central pi, K, p 0.08 0.06 0.1 0.2 0.3 0.4 0.5 0.6 0 Collective Velocity $\langle \beta_{\tau} \rangle$ (c)

Y. Zhang, SQM 2006

BW3: π , K, p

BW2: multi-strange hadrons BW1: Fit to charm hadrons

Expected to freeze out earlier $-T > 140 \; \text{MeV}$ Small collective velocity $<\beta_{\text{T}}><\phi \;\;,\Omega$ disfavor large radial flow!

High p_⊤ suppression

Revisit the energy loss mechanism!

Suppression in Cu+Cu follows the $N_{\rm part}$ trend

Bottom contribution?

e-h correlation

Azimuthal distribution fit benefiting from the kinematic difference -- poor man's approach to obtain the relative bottom contribution to the non-photonic electrons.

X. Lin, QM06

e-D⁰ correlation

Bottom contribution

Near side: Charm from gluon splitting?

Bottom contribution to non-photonic electrons is important at high p_T , and it is consistent with FONLL calculations.

D*-jet correlation

$$D^{*+} \to D^0 \pi_s^+(68\%), D^0 \to K^- \pi^+(3.8\%)$$

Jet reconstruction mid-cone point method widely used in STAR spin analysis PRL 97 (2006) 252001

The study of D* production in jet sheds light on understanding the charm production mechanism at RHIC energy.

Counts

Charm production in jets

High z yields match the MC for direct flavor creation process. Low z excess is expected to originate from gluon splitting.

$$N(D^{*+}+D^{*-})/N(jet) = 0.015 \pm 0.008 \pm 0.005$$
 (0.2T> ~ 11.5 GeV)

- Gluon splitting rate to ccbar is consistent with pQCD calculations!
- ➤ Charm content in jets has a small contribution from gluon splitting and dominated by jets initiated by charm quarks!

STAR Jet X-sec: PRL 97 (2006) 252001

e-h in A+A

Mach-cone Shockwave? Cerenkov radiation?

 $Au+Au~200~GeV~0-20\%,~3 < p_T^{trig} < 6~GeV/c,~0.15 < p_T^{assoc} < 1~GeV/c$

A good start! Hungry for statistics! Heavy quark will provide a unique probe to characterize the medium property.

First look from Run 8 data

d+Au & p+p 200 GeV SVT & SSD were removed (Very) low material run

Background reduced by a factor of 10

Heavy quark decay electron yield is comparable or even higher than the photonic background in Run 8!

~ 3 M p+p tpxtof triggered events from Run 8 76 M p+p tpxtof triggered events in total, and 3-4 pb⁻¹ EMC high tower triggered data.

Summary

STAR detector is unique to perform multi-measurements in one experiment

- open charm hadron reconstruction
- non-photonic electrons
- heavy quark decay muons
- > correlations between them due to large (eta,phi) coverage

Qualitative conclusions

Charm production X-sec is approximately scaled by N _{bin}	to xx%
Charm hadron seems to not have a large radial flow	significance?
$R_{AA}(e) \sim R_{AA}(h)$ at high p_T	to xx%
Bottom contribution in non-photonic electrons is important	to xx%
Charm from gluon jet splitting is small	< xx%
e-h correlation in AA seems to show a similar broadening in the away side	significance?

Quantitative measurements are called for

Improve the precision on charm total/differential cross sections in A-A/p-p collisions Quantify the medium properties and EoS.

Topologically reconstruction of identified open heavy quark hadrons is ultimate!

STAR Upgrade Plans

Topological reconstruction of the secondary vertices at precision 20-40 µm

Direct *identified* charm (bottom) hadron reconstruction

Barrel Time-Of-Flight (TOF)

Improve the stable particle PID capability π/K to 1.6 GeV/c $(\pi, K)/p$ to 3 GeV/c

Improve the S/(S+B) ratio by \sim 10-20 for D⁰ (0-5 GeV/c)

