

Di-electron Production from $\sqrt{s_{NN}}$ =200GeV Au+Au Collisions at STAR

Jie Zhao^{1,2}

for the STAR Collaboration

- 1, Lawrence Berkeley National Lab, USA
- 2, Shanghai Institution of Applied Physics, CAS, China

> Motivation

- Electron identification
- Background subtraction

Di-electron production in Au + Au collisions

comparison with theoretical calculations acceptance investigation

- > Transverse mass spectra
- Summary and outlook

Motivation(1)

Dielectron – A Penetrating Probe of the Medium

Advantages: EM probe / penetrating – not suffer strong interactions (p_T, M) – additional mass dimension, sensitive to different dynamics Challenges: Production rate is rare, over many background sources integral over time, sensitive to system evolution

Motivation(2)

Provide two dimensions (mass vs p_T)

✓ mapping to the collisions dynamics

≻Low mass region (LMR):

✓*in-medium modifications of vector mesons*

✓ chiral symmetry restoration

≻Intermediate mass region (IMR):

Itermal radiation expected to have significant contribution

✓ dominated by charm in p+p, but the contribution is expected to be modified in Au+Au

≻High mass region (HMR):

Index for the second states of the second second

Motivation(3)

STAR detector

Electron Identification

TOF velocity cut to remove slow hadrons

Clean electron PID in p+p and Au+Au collisions with a combination of TPC dE/dx and TOF velocity

✓ electron purity ~99% in p + p collision, ~97% in Au + Au MinBias collision.

✓ hadron contamination contribution to the correlated background is small, and has been included in the systematic uncertainties (Au + Au).

Background Reconstruction

Background:combinatorial + correlated backgroundSignal:particle decay + QGP/medium pair prod.

Signal/Background

Di-electron production in Au + Au collisions

Di-electron production in Au + Au collisions

~ 150M Au+Au Central (0-10%)

Clearer LMR enhancement in central collisions compared to minbias collisions

- ρ contribution not included in the cocktail

- charm = PYTHIA*N_{bin} (0.96mb) overpredicts the data at IMR indicating charm modifications in central Au +Au collisions

Theoretical comparison

➢HG_med, QGP from R. Rapp (private communication) *R. Rapp and J.Wambach, Adv. Nucl. Phys. 25, 1 (2000).*

Blue dotted: Hadronic gas medium modification

Pink dotted: QGP radiation

Solid lines: upper: cocktail + HG+QGP

lower: hadronic cocktail

- Parton-Hadron-String Dynamics(PHSD)

 Collisional broadening of vector mesons
 Microscopic secondary multiple-meson channels
 Radiation from the strongly interacting QGP(sQGP)

 Hao-jie Xu et al Phys. Rev. C 2012 85 024906
 Yukinao Akamatsu et al Phys. Rev. C 2012 85 054903
 - ۶...

Transverse mass spectra

LMR Enhancement

Note: Acceptance difference etc.

STAR and PHENIX

Cow mass region:

- Enhancement in Au + Au central collisions compared to the cocktail consistent with theoretical calculation with vector meson in-medium modification

>Intermediate mass region:

- Inclusive di-electron \mathbf{m}_{T} slope parameter is higher in Au + Au compared to $\mathbf{p}+\mathbf{p}$

modification of charm and/or thermal radiation contribution ?

- Need more precise measurement to constrain charm and QGP thermal radiation contributions

Outlook:

- in the future, STAR Heavy Flavor Tracker and Muon Telescope Detector,
 charm contribution! (D meson, eμ ...)
 - LJ.Ruan Friday morning

BACKUP

Included in systematic uncertainties

Photon conversion removal

Low material budget in run9 and run10

- Conversion electrons are removed from signal pair reconstruction.

- Difference between w/ and w/o photon conversion rejection to the final signal is less 10% at M>0.2GeV/c² (included in the systematic errors)

Background Reconstruction

Like Sign:

$$1: B_{LikeSign} = 2\sqrt{N_{++}} \cdot N_{--} \cdot \frac{B_{+-}^{Mix}}{2 \cdot \sqrt{B_{++}^{Mix}} \cdot B_{--}^{Mix}}$$

$$2: B_{LikeSign} = a(N_{++} + N_{--}) \cdot \frac{B_{+-}^{Mix}}{(B_{++}^{Mix} + B_{--}^{Mix})b} \qquad a = \frac{\int_{0}^{\infty} 2 \cdot \sqrt{N_{++}} \cdot N_{--} dmdpT}{\int_{0}^{\infty} (N_{++} + N_{--}) dmdpT} \quad , \qquad b = \frac{\int_{0}^{\infty} 2 \cdot \sqrt{B_{++}^{mix}} \cdot B_{--}^{mix} dmdpT}{\int_{0}^{\infty} (B_{++}^{mix} + B_{--}^{mix}) dmdpT}$$

MixEvent:

normalize mixed likeSign ++ and -- to same event ++ and --

$$A_{+} = \int_{N.R.} \frac{N_{++}}{B_{++}^{Mix}} dm dpT \quad , \qquad A_{-} = \int_{N.R.} \frac{N_{--}}{B_{--}^{Mix}} dm dpT$$
$$B_{++}^{mix} = \int_{0}^{\infty} A_{+} B_{++}^{mix} dm dpT \quad , \qquad B_{--}^{mix} = \int_{0}^{\infty} A_{-} B_{--}^{mix} dm dpT,$$

normalize mixed unlikeSign (combinatorial background)

$$B_{+-}^{combinatorial} = \frac{2\sqrt{B_{++}^{mix} \cdot B_{--}^{mix}}}{\int_{0}^{\infty} B_{+-}^{mix} dm dp T} B_{+-}^{mix}$$

PHENIX PRC 81, 034911 (2010)

Cocktail with p

Enhancement in Central collisions

The fit of charm cocktail to the data gives: 0.62 ± 0.14 mb

PYTHIA setting for charm: V6.416 MSEL=1, PARP(91)=1.0 (kt), PARP(67)=1 (parton shower level)

Systematic error

Cocktail

> Inputs:

flat rapidity (-1,1) flat Φ (0, 2 π)

p_T: in **p**+**p**, use Tsallis function fit for all measured particles

in Au+Au for measured π^0 , J/ψ use Tsallis function fit, and use m_T-scaling for η , ω , ϕ , η `

Considered minbias centrality definition difference between PHENIX (0-93%) and STAR (0-80%)

STAR and PHENIX

STAR and PHENIX

PHENIX Acceptance, PhysRevC.81.034911

≻Signal track acceptance in ¢ direction≻ee pair mass distribution

Like-Sign and unLike-Sign in same and mix event

STAR with PHENIX Φ acceptance

STAR with PHENIX acceptance

