Dielectron Production in Au+Au Collisions from STAR

Joey Butterworth [For the STAR Collaboration] Rice University November 6th, 2013

Hard Probes 2013, Stellenbosh, South Africa

Outline

- Motivation
- STAR
- Analysis Techniques
- Data + Observations
- Summary & Outlook

Dielectrons

- Excellent Probe
 - Minimal final state interactions
 - Generated at all stages of the collision
- Chronological Phases [early to latest]
 - High Mass Region [HMR]
 - Drell-Yan
 - $J/\psi + \Upsilon$ suppression
 - Intermediate Mass Region [IMR]
 - Heavy flavor modification
 - QGP thermal radiation
 - Low Mass Region [LMR]
 - Vector meson modification
 - Possible link to chiral symmetry restoration

Modification of ρ -meson

- CERES Measurements

- Possible explanations
 - Vacuum ρ [dash]
 - Mass dropping [dot-dash]
 - Broadening of spectral function [solid]

Modification of p-meson

- NA 60
 - Vacuum ρ is inadequate [dash-dot]
 - Excludes mass-dropping [dash]

- RHIC AuAu 200
 - Vacuum ρ inadequate
 - Supports ρ broadening

Beam Energy Scan

- RHIC Beam Energy Scan Program [2010-2011]
 - Au+Au @19.6, 27, 39, & 62.4 GeV
 - Same colliding species & detector
 - Opportunity to extensively study ρ spectral function
 - Connect between SPS & RHIC Au+Au 200 GeV
 - Dependence on \sqrt{s} ?
 - Compare to models

STAR Detector

Time Projection Chamber [TPC]

- Tracking
- Ionization energy loss
- Full azimuthal coverage

Time of Flight [TOF]

- Precise timing (<90ps)
- Improves TPC's purity
- Full azimuthal coverage

Electron Identification

- **Combine the TPC+TOF**
 - TPC provides:

- Use TOF to remove slow hadrons

ngel

2.2

2

1.8

1.6

1.4

0.6

10⁶

Background Removal

- Types of background: 3 C's
 - Combinatorial, Correlated, & Conversion
- Techniques
 - Same event like-sign pairs [LS]
 - Combine all like-sign pairs & average
 - Removes combinatorial & correlated
 - Like-sign/unlike-sign acceptance difference
 - Corrected with mixed events
 - Mixed event pairs [ME]
 - Pair e⁺/e⁻ from different events w/ similar properties
 - Removes combinatorial
 - Pair cuts [PC]
 - Removes conversions

Beam Energy Scan Inv. Mass

$\sqrt{\mathbf{s_{NN}}}$ [GeV]	19.6	27	39	62	200(Y10)
Min. Bias Events	28M	70M	99M	55M	240M

STAR Acceptance cuts:

 $\begin{array}{l} p_{Te} > 0.2 \; \text{GeV/c}, \mid \eta_{e} \mid < 1., \text{and} \mid Y_{ee} \mid < 1 \\ [Y_{ee} \; \text{not used in 27GeV}] \end{array}$

Beam Energy Scan Inv. Mass

$\sqrt{\mathbf{s_{NN}}}$ [GeV]	19.6	27	39	62	200(¥10)
Min. Bias Events	28M	70M	99M	55M	240M

STAR Acceptance cuts:

 p_{Te} > 0.2 GeV/c, $\mid \eta_{e} \mid$ < 1., and \mid $Y_{ee} \mid$ < 1

Observations

- Cocktail does not include ρ-meson
- LMR excess at all $\sqrt{s_{NN}}$

Observations II

 CERES + PHENIX have different acceptances than STAR

- ρ -meson modifications at all $\sqrt{s_{NN}}$
- The absolute excess yield(data cocktail) shows no significant √s_{NN} dependence given uncertainties
- The Enhancement Factor is sensitive to the mass range selected
 - The charm component in the cocktail baseline increases with $\sqrt{{
 m s}_{
 m NN}}$

Theory: Rapp, Wambach, van Hees[RWvH]

- Hadronic phase: ρ-meson "melts" when extrapolated to phase transition boundary
 - Total baryon density dependent
- Top-down extrapolated QGP rate coincides with bottom-up extrapolated hadronic rates

- STAR's Run 10 AuAu Central 200GeV
- Model curves provided by Rapp
- Complete evolution (HG + QGP)
- Agrees within uncertainties

R.Rapp, PRC 63 (2001) 054907. Rapp & Wambach, EPJ A 6 (1999) 415. Calculations via Priv. Comm. w/ Rapp

BES Comparisons to RWvH

Rapp + Wambach, Adv. Nucl. Phys. 25, 1 (2000). Phys. Rev. 363, 85 (2002). Calculations via Priv. Comm. w/ Rapp

- Cocktail w/out ρ contributions [solid curve]
- Cocktail w/ medium modified p [dashed line]
- Data consistent with p-meson broadening
 - Model dependent on total baryon density
- Tests extensive function of the $\rho\text{-meson's spectral function}$

Study on Direct Virtual Photon

- Ideal probe to study the evolution of the medium by selecting different kinematics
- l~4GeV/c
 - Study the properties of QGP
- High $p_T(>6GeV/c)$:
 - Study the photon produced in the primordial step, distinguish initial- and final-state suppression

• Relation between real photon production and the associated ee pair production

$$\frac{\mathrm{d}^2 N_{ee}}{\mathrm{d}m_{ee} \,\mathrm{d}p_T} = \frac{2\alpha}{3\pi} \frac{1}{m_{ee}} L(m_{ee}) S(m_{ee}, p_T) \frac{\mathrm{d}N_{\gamma}}{\mathrm{d}p_T}$$
$$L(m_{ee}) = \sqrt{1 - \frac{4m_e^2}{m_{ee}^2}} \left(1 + \frac{2m_e^2}{m_{ee}^2}\right)$$

for m_{ee}>>m_e && p_T>>m_{ee} S ~ 1 L ~ 1 Normalize f_{dir} $\frac{d^2 N_{ee}}{dm_{ee}} \approx \frac{2\alpha}{3\pi} \frac{1}{m_{ee}} dN_{\gamma}$

Two component fit to quantify the excess

$$f = (1-r)f_c + rf_{dir}$$

direct virtual photon component

Beam Energy Scan

- AuAu 15 GeV [Feb. 2014]
 - Continue extensive study
 - Test baryon density dependence
- Future: BES II [~2018+2019]
 iTPC, Enhanced Statistics, Dimuons

Muon Telescope Detector

- Multi-gap Resistive Plate Chamber detector
 - Similar to STAR's TOF
 - Located outside the magnet
 - Fully installed for AuAu 200GeV next year
- Dimuon
 - Pros vs dielectrons: Less background, triggering possible, less Dalitz decay
 - Measure thermal radiation
 - Determine excess dimuon
 - Fit slope m_T-M slope to find T_{eff}
- Electron-muon
 - Better handle on charm contribution
 - To better understand background in IMR
 - Aides dielectron thermal radiation study

Summary

- Observed excess w.r.t. the hadronic cocktail and the excess is consistent with model calculations involving broadened-ρ spectra
- No strong energy dependence of the LMR excess from 19.6 – 200 GeV

Outlook

- Direct Virtual Photon
- Beam Energy Scans [I & II]
- Muon Telescope Detector

Thank you!

Extras

ω & ϕ Spectra in AuAu @ 200GeV

- ϕ consistent with no broadening/mass shift given uncertainties
 - Detector resolution limiting factor

- w p_T spectra matches that of PHENIX and light hadrons

CERES + NA60 Acceptance

Efficiency Corrections

- Pair efficiencies based on single track eff.
 - Pair Methods
 - ToyMC: γ*→e⁺e⁻
 - Apply STAR acceptance
 - Single Track
 - Tracking [Embedding]
 - Matching tracks to TOF detector [Data]
 - Electron Identification [Data]

Pair acceptance correction

