

Hard Probes 2013

The 6th International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions

> November 4 - 8, 2013 Cape Town, South Africa

Hard Probes in STAR an overview

Frank Geurts (Rice University) For the STAR Collaboration

Outline

- The STAR detector
- Selected Results
 - heavy flavor: open charm, J/Ψ , and Y
 - dielectron measurements
 - jets in Au+Au
 - direct photon correlation measurements
 - dihadron azimuthal correlations in d+Au
 - azimuthal anisotropy in U+U
- Future of HF Measurements at STAR

The STAR experiment

The Solenoid Tracker At RHIC (STAR) STAR

Large and uniform acceptance at mid-rapidity $|\eta| < 1$ and $0 < \phi < 2\pi$

- Excellent particle identification ۲
- Fast data acquisition ullet
- Upcoming upgrades targeted at • heavy-flavor measurements
 - improve tracking
 - improve muon PID

STAR detectors in these analyses

- TPC (dE/dx)
- TOF (1/ β)
- BEMC (E/p)
- VPD, ZDC, FTPC

Hard Probes 2013 :: STAR Overview

Heavy-Flavor Measurements

- Heavy Flavor primarily from initial hard scattering
 - important probe for studying properties of the QGP
 - sensitive to the initial gluon distribution & density
 - parton energy loss in the medium
- Hadronic decay
 - small branching ratio
 - fully reconstructed
 - direct access to heavy quark kinematics
 - large combinatorial background (if no secondary vertex)
- Semi-leptonic decay
 - large branching ratio
 - single e[±]: indirect access to kinematics
 - background from conversion and light hadron decay

heavy quarkonia

open heavy flavor

Zhenyu YE – Monday 14h30

D⁰ in Au+Au and U+U

Hadronic channel in Au+Au at Vs_{NN}=200 GeV

- Enhancement structure at low p_{T}
 - consistent with coalescence models

Au+Au 200 GeV, lyl<1, 3.0<p_<8.0 GeV/c

200

- Strong suppression for D^0 at high p_T
 - similar to R_{AA} of π^{\pm}

U+U 193 GeV,

100

STAR Preliminary

 $R_{AA} (D^0)$

1.5

0.5

0

Stellenbosch -- 11/4/13

similar in Au+Au and U+U (Vs_{NN}=193 GeV)

lyl<1, 3.0<p_<5.0 GeV/c

300

p+p

400

<N bart/

norm

Non-Photonic Electrons

Au+Au at √s_{NN}=200 GeV

- Strong suppression for NPE
 - Data disfavors radiative energy-loss-only [№] models
 - need improvement p+p precision
 - no indication of suppression at 62GeV when comparing to FONLL ref.
- Significant v₂ for NPE
 - coalescence with light quarks or charm quark flow?

Quarkonia

- Sensitive to color screening of quark potential: dissociation in QGP
- Suppression of different states determined by medium temperature and their binding energy
 - QGP thermometer
- Production mechanism not completely understood
 - p+p: Color-Singlet or Color-Octet?

But, ...

- Measured J/ Ψ yields include significant feeddown contributions
 - B mesons carry 10-25% of charmonium yield
- Contributions from Cold Nuclear Medium effects
 - suppression mechanisms, *e.g.* nuclear absorption, gluon shadowing, initial state energy loss
 - enhancement mechanisms, Cronin effect
- Contributions from hot & dense medium effects \bullet
 - recombination from uncorrelated charm pairs

Jaro BIELCIK – Friday 9h30

 $T < T_c$

Y χ_bY'

1.1

11 11 11

11 II II 11 11 11

J/Ψ in p+p and d+Au

- p_T range in p+p extended to 14 GeV/c
 - prompt NLO CS+CO describes data
 - prompt CEM describes data at high p_{T}
 - direct NNLO CS underpredicts high p_{T}
- R_{dAU} consistent with model calculations
 - shadowing from EPS09 nPDF

1.8

1.6

1.4

0.8 0.6

0.4

0.2

^{1.2} Н

- nuclear absorption: $\sigma_{abs}^{J/\Psi}=3mb$

J/Ψ in Au+Au

- Au+Au at 200 GeV: suppression observed
 - increase with centrality
 - decrease with p_T
- Au+Au at 39 and 62.4 GeV
 - similar centrality and p_T dependence
- Au+Au v₂: consistent with no flow
 - disfavors production by coalescence of thermalized charm (for $p_T>2$ GeV/c)

2 1.8 صح

1.6

1.4

1.2

0.8

0.6 0.4

0.2

0

'n

AR Preliminary

100

200 GeV 62.4 GeV 39 GeV

200

62.4 GeV theoretical curve

39 GeV theoretical curve

p+p uncertainty 39 GeV p+p 200 GeV(statistics)

> 400 N_{part}

N_{coll} uncertainty p+p uncertainty 62.4 GeV

300

Y in Au+Au at 200 GeV

- Advantages over J/Ψ:
 - negligible recombination effect
 - at RHIC: $\sigma_{cc}(\sim 800 \mu b) >> \sigma_{bb}(\sim 1-2 \mu b)$
 - less co-mover absorption effect
 - Y(1S) tightly bound, thus large kinematic threshold
 - expect $\sigma_{abs}^{Y} \sim 0.2 \text{mb} < \sigma_{abs}^{J/\Psi}$ Lin & Ko, PLB 503 (2001) 104
- Disadvantage: low production rate ...
 - STAR upgrades!
- Suppression of Y(1S+2S+3S) observed
 - R_{AA} decreases with centrality

Joey BUTTERWORTH– Wed 11h00

Axel Drees

Dielectron Measurements

- Intermediate Mass Range
 - QGP thermal radiation
 - heavy-flavor modification
- Low Mass Range
 - in-medium modification of vector mesons
 - possible link to chiral symmetry restoration
- Advantage:
 - very low cross section with QCD medium
 - created throughout evolution of the system
- Disadvantage
 - (very) low signal/background
 - requires low material budget

Vector Meson Modification

- STAR and PHENIX confirm significant LMR excess
 - already observed at SPS energies
 - vacuum ρ description essentially fails
 - SPS: ρ broadening
 - PHENIX: yet to be explained by models
 - STAR: less excess, agreement with models
 - which involve ρ broadening
- At SPS: significant net-baryon density, baryons main contributor
- At RHIC: vanishing net baryon density, but comparable <u>total</u> baryon density
 - STAR Beam Energy Scan: close gap between RHIC & SPS

Measurements at Vs_{NN} = 19.6, 27, 39, 62.4 GeV

Stellenbosch -- 11/4/13

Beam Energy Scan: Dielectrons

Jets as Probes of Nuclear Matter

- In p+p: hard-scattered partons
 fragment and hadronize into
 collimated sprays of hadrons, *i.e.* jets
- In A+A: expect jet quenching in hot & dense medium
 - softening and broadening of fragmentation when compared to p+p

> Jets probe nuclear medium

 but, very challenging in high multiplicity environment

Inclusive Charged Jet R_{AA}

Jet reconstruction method similar to ALICE

- dominant uncertainty: tracking efficiency
- R_{AA} > 0.5 for Au+Au at 200GeV
- $R_{AA}(RHIC) > R_{AA}(LHC)$
 - at same jet p_T
- Central R_{AA} value increase with size of jet R ?
 - uncertainties large
 - careful assessment of correlated/uncorrelated errors

v₂ of direct photons

At high p_T , the azimuthal anisotropy could constrain the path length dependence of energy loss "jet quenching"

Fuqiang WANG – Thu 14h30

Dihadron correlations in d+Au

Ridge seen in smaller systems at LHC

- Ridge in d+Au at RHIC?
 - > STAR: large acceptance $|\Delta \eta_{TPC}| < 2$
 - with FTPC $1.8 < |\Delta \eta_{FTPC}| < 4.8$
- central-peripheral technique
 - should remove centrality-independent correlations
- Central-peripheral resembles jet correlations
 - FTPC-Au multiplicity selection biases jets in TPC
- Fourier decomposition of correlations functions:
 - correlations have V_1 and V_2 components
 - V₁ appears ~1/multiplicity
 - V₂ is approximately constant vs. multiplicity

Paul SORENSEN – Mon. 16h00

Azimuthal Anisotropy in U+

- Prolate shape of Uranium nucleus provides possibilities to study ...
 - multiplicity dependence on $\rm N_{part}$ and $\rm N_{coll}$
 - path-length dependence of jet quenching
- Can we see the differences between Au+Au and U+U?
 - and, can we separate between body-body and tip-tip collisions?

- body-body:
 - large initial ε , thus large v_2

• tip-tip:

- larger N_{coll} (given $N_{part})$, thus larger $dN/d\eta$

 \geq large dN/dη correlates with small v₂?

- simulations say yes
- knee structure in v₂ at high dN/dη

Stellenbosch -- 11/4/13

Multiplicity dependence of v₂ in Central U+U and Au+Au Collisions

STAR Upgrades: HFT +MTD

- Heavy Flavor Tracker + Muon Telescope Detector on track for RHIC Run 14
 - major focus: heavy-flavor & dilepton measurements
 - revisit Au+Au, p+p, and p+Au at Vs_{NN} =200 GeV

Muon Telescope Detector

- - Heavy Flavor Tracker

- Separate charm and bottom, study open heavy flavor (HFT), quarkonia (MTD), thermal dileptons (MTD)
 - combine HFT+MTD: separate secondary J/ Ψ from prompt
 - combine MTD+BEMC: trigger on e-μ pairs to disentangle charm contributions to the dilepton IMR

Summary

STAR @ HP2013: wide range of results from hard probes, electromagnetic probes, initial conditions based on TPC, TOF, EMC

but also forward detectors such as ZDC and FTPC

STAR Contributions at HP'13

<u>Monday</u>

Parallel: High Transverse Momentum Light and Heavy Flavor Hadrons ...

80 Zhenyu Ye - Measurements of Open Heavy Flavor Hadrons in STAR Experiment

Parallel: Initial State and Proton-Nucleus Collision Phenomena ...

83 Paul Sorensen - Azimuthal anisotropy v₂ in U+U collisions at STAR

<u>Tuesday</u>

 – 187 Jan Rusnak - Fully Reconstructed Charged Jets in Central Au+Au Collisions at vs_{NN}=200 GeV from STAR

<u>Wednesday</u>

- 197 Joey Butterworth - Dielectron production in Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6, 27, 39, and 62.4 GeV from STAR

<u>Thursday</u>

Parallel: Initial State and Proton-Nucleus Collision Phenomena ...

 86 Fuqiang Wang - Dihadron azimuthal correlations at large pseudo-rapidity difference in multiplicity-selected d+Au collisions by STAR

<u>Friday</u>

- 209 Jaro Bielcik - Quarkonium measurements in the STAR experiment

<u>Poster</u>

Ota Kukral – J/Ψ production in U+U collisions at 193 GeV in the STAR experiment
 Stellenbosch -- 11/4/13
 Hard Probes 2013 :: STAR Overview