

Low-p_T e⁺e⁻ pair production in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV and U+U collisions at $\sqrt{s_{NN}}$ = 193 GeV at STAR

Shuai Yang (for the STAR Collaboration)

Brookhaven National Laboratory

Dilepton – penetrating probe of hot, dense medium

Dileptons from photon interactions

- \succ Large quasi-real photon flux $\propto Z^2$
- Photon interactions
 - Photon-nuclear interaction (vector mesons) $\propto Z^2$
 - Photon-photon interaction (dilepton...) $\propto Z^4$
 - Distinctly peaked at low \boldsymbol{p}_{T}

Conventionally only studied in ultraperipheral collisions (UPCs)

10/02/18

Photon interactions only happens in UPCs? – Anomalous J/ ψ enhancement

 \succ Significant enhancement at low p_T in peripheral collisions

- Cannot be explained by hadronic production accompanied with the cold and hot medium effects
- Could be qualitatively explained by coherent photonuclear production mechanism [W. M. Zha et al., PRC 97 (2018) 044910]
 10/02/18 Shuai Yang, Hard Probes 2018

4

The STAR detector

> Midrapidity coverage: $|\eta| < 1$, $0 < \phi < 2\pi$

TPC: Tracking + PID (dE/dx) TOF: PID $(1/\beta)$

10/02/18

Shuai Yang, Hard Probes 2018

2×10⁻¹

momentum (GeV/c)

Low-p_T e⁺e⁻ invariant mass spectra in peripheral heavy-ion collisions

Significant enhancement with respect to the cocktail in 60-80% Au+Au and U+U collisions

Mass (GeV/c^2)	Au+Au	U+U
0.4 - 0.76	$12.4 \pm 0.7 \pm 2.0 \pm 3.7$	$17.1 \pm 1.0 \pm 2.4 \pm 5.1$
0.76 - 1.2	$3.9 \pm 0.3 \pm 0.6 \pm 0.8$	$4.6 \pm 0.4 \pm 0.5 \pm 0.9$
1.2 - 2.6	$12.6 \pm 1.2 \pm 1.7 \pm 1.9$	$13.8 \pm 1.9 \pm 1.5 \pm 2.1$

 Enhancement factor (data/cocktail) decreases from peripheral to central collisions

STAR

p_T spectra in 60-80% collisions

Excess concentrate below $p_T \approx 0.15$ GeV/c

> Data are consistent with hadronic expectation when $p_T > 0.15$ GeV/c

Excess spectra in $p_T < 0.15$ GeV/c

Few tips of photon interaction model calculations

- Equivalent Photon Approximation (EPA) method
 - Photon is treated as real
 - Weizsäcker–Williams method to estimate photon flux
- Model by Zha et al. [W. M. Zha et al., PLB 781 (2018) 182]
 - Considers the charge distribution in nucleus for photon flux estimation
 - Takes into account dilepton production within the geometrical radius of the nucleus
- STARlight [S. R. Klein, PRC 97 (2018) 054903]
 - Ignores dilepton production within the geometrical radius of the nucleus

Compared to photon interaction models

- The observed excess can be qualitatively described by photon-photon interaction model calculations
 - Zha *et al.*: χ^2 /NDF = 19/15 in 60-80% collisions
 - STARlight: χ^2 /NDF = 32/15 (underestimate) in 60-80% collisions
- Photoproduced vector mesons' contributions can be negligible
- Enhancement in U+U collisions is larger than that in Au+Au collisions, which is in line with STARlight prediction

10/02/18

Shuai Yang, Hard Probes 2018

11

STAR

> Models fail to describe p_T^2 distributions

 $\sqrt[6.008]{0.008}$ > $\sqrt{< p_T^2 >}$ has invariant mass and collision species dependence

 Suggestive of possible other origins of p_T broadening, e.g. magnetic field trapped in QGP

 p_T^2 distributions in 60-80% collisions

Sensitivity to residual magnetic field

- To account for the effect of the time-dependent magnetic field on average, the model assumes that all the e⁺e⁻ pairs traverse 1 fm through a magnetic field of 10¹⁴ T perpendicular to the beam line
 - The net effect of this approach is close to $\int eB(t)cdt = e\overline{B}L$
 - $e\overline{B}L \approx 30$ MeV/c, the extreme pair p_T increase: $2e\overline{B}L \approx 60$ MeV/c 10/02/18 Shuai Yang, Hard Probes 2018

STAR

p_T^2 distributions in 60-80% collisions

low- p_T enhancement study in hadronic heavy-ion collisions.

10/02/18

Shuai Yang, Hard Probes 2018

A plausible explanation for the collision species dependence of $\sqrt{< p_T^2 >}$

calculations are based on: S. Chatterjee and P. Tribedy, PRC 92, 011902 (2015)

Initial magnetic fields (t=0) at the center of the participant zone

- Peripheral U+U has larger charge number but more spread-out compared to Au+Au
 - Lager cross section
 - Smaller $\sqrt{< p_T^2 >}$ 10/02/18

Shuai Yang, Hard Probes 2018

Isobaric collisions in 2018

- ➢ $^{96}_{44}$ Ru vs. $^{96}_{40}$ Zr
 - Charge differs by 10%, everything else is almost the same
 - Huge statistics: 3.1B vs. 1.5B (goal) minimum-bias events
 - Rapidly (daily) switching between Zr and Ru: minimize systematic uncertainty

- ➢ 60-80% Au+Au vs. 47-75% Ru+Ru
 - Similar hadronic contribution
 - Different yields from two photon interactions
- Statistics
 - 60-80% Au+Au: ~180M
 - 47-75% Ru+Ru (Zr+Zr): ~840M
- Yield ratio in 0.4-0.76 GeV/c²
 - Au : Ru : Zr ≈ 8.11 : 1.46 : 1
 - Difference between Ru+Ru and Zr+Zr: 3.7σ
 - Help to verify and constrain the possible trapped magnetic field

- A significant e⁺e⁻ enhancement w.r.t. cocktail is observed at very low p_T
 - Entirely happens below $p_T \approx 0.15 \text{ GeV/c}$
 - Can be qualitatively explained by photon-photon interaction mechanism
 - $\sqrt{\langle p_T^2 \rangle}$ from data are larger than that from model calculations -> May indicate the existence of strong magnetic field trapped in QGP
 - The isobaric data could further constrain the photon interactions and the strong magnetic field in hadronic heavy-ion collisions

Backup

10/02/18

Excess spectra are corrected for the STAR acceptance

> Different initial conditions by changing energy density (species + $\sqrt{s_{NN}}$)

Acceptance-corrected excess mass spectra from SPS to top RHIC energies are well described by an in-medium broadened ρ model calculation

Anomalous low-p_T J/ ψ enhancement in hadronic heavy-ion collisions

Qualitatively described by photon-nuclear interactions in peripheral collisions

- N+N scenario overestimates while S+S scenario underestimates data in semi-central collisions.
- Different scenarios predict different centrality dependence –> measurements in central collisions are important
- N+S and S+N scenarios have weak centrality dependence in peripheral and semicentral collisions 10/02/18 Shuai Yang, Hard Probes 2018

Table 1. The ratios of observed excess yields in U+U collisions over those in Au+Au collisions for three different mass regions in three different centrality bins. The error listed in this table includes statistical error only.

	70-80%	60-70%	40-60%
$0.4-0.76 (GeV/c^2)$	1.42 ± 0.13	1.54 ± 0.23	1.24 ± 0.35
0.76-1.2 (GeV/c ²)	1.02 ± 0.18	1.49 ± 0.35	2.12 ± 0.96
$1.2-2.6 (GeV/c^2)$	0.92 ± 0.20	1.43 ± 0.39	0.97 ± 0.61

STARlight predicts that the excess yields from photon-photon interactions in U+U collisions are ~40% larger than those in Au+Au collisions

Spatial distribution of photon collisions

Shuai Yang, Hard Probes 2018

Strength of the magnetic field s

Shuai Yang, Hard Probes 2018