

10th International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions

Low- $p_T \mu^+ \mu^-$ production in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV at STAR

Zhen Liu (for the STAR Collaboration)

State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China

Dileptons – penetrating probe of QGP

- Do not suffer strong interactions
- Bring direct information of the medium created in heavy-ion collisions

AR

Dileptons from photon interactions

- Boosted nuclei have intense electromagnetic field ⇒ treated as quasi-real photons in the Weizsacker-Williams equivalent photon approximation
 - Photon flux increases with Z^2
 - Photoproduction is distinctly peaked at low p_T
- Conventionally studied in ultraperipheral collisions (UPCs)

G. Breit and John A. Wheeler,

Phys. Rev. 46 (1934) 1087

Photons in hadronic heavy-ion collisions

- Photons interact at the very beginning
- The dileptons can bring the information from the nuclear overlap region

AR

Photoproduction with nuclear overlap

- Excess e^+e^- pair p_T distribution concentrates below $p_T \sim 0.15$ GeV/c
 - Evidence of photon interactions in hadronic heavy ion collisions

FAR

- Calculated p_T² spectra with EM effects can describe the Au+Au data much better than the same model without incorporating EM effects
 - The level of p_T broadening may indicate the existence of strong magnetic field trapped in a conducting QGP?
 - Or due to the QED scattering between the lepton pair and the medium?

- Spencer Klein et al., Phys. Rev. Lett. 122 (2019) 132301

STAR, Phys. Rev. Lett. 121 (2018) 132301 STARlight, Phys. Rev. C 97 (2018) 054903 Zha et al. Phys. Lett. B 781 (2018) 182

Sensitivity to electromagnetic field trapped in QGP?

- The broadening originates predominantly from the initial electromagnetic field strength that varies significantly with impact parameter
- An additional small broadening may be due to final-state interaction

STAR

Sensitivity to electromagnetic field trapped in QGP?

- More studies are needed to understand the modification of coherent photoproduction with nuclear overlap
- Low-p_T muon pairs production measurements provide a complementary channel and will help to further improve our understanding of photon-induced processes

STAR

The Solenoid Tracker At RHIC (STAR)

• Mid-rapidity detector: $|\eta| < 1$, $0 < \varphi < 2\pi$

STAR

Muon PID with TPC+MTD

Data set: 2014 Au+Au 200 GeV, full luminosity ~ 14.2 nb⁻¹

End view of an LMRPC module for the full MTD

MTD system:

- fully installed in 2014, behind magnet backlegs (~ 5 interaction length)
 - $p_T^{\mu} > 1.3 \text{ GeV/c could hit MTD}$
 - Precise timing measurement ($\sigma \sim 100 \text{ ps}$)
 - Arrive time: Δtof cut
 - Spatial resolution (~ 1 cm)
 - Hit position: Δy and Δz cut

TPC:

- measure energy loss
 - dE/dx cut: muons are expected to lose about 0.5 σ more energy compared to pions; -1 < n σ_{π} <3 (2.5 σ)

MTD system provides the possibility of muon pair measurement in the high mass region

Signal Extraction

- The $\mu^+\mu^-$ invariant mass distribution for $p_T < 0.15$ GeV/c in peripheral collisions
 - The mixed-event technique is used to estimate the combinatorial background
 - Focused on the high mass region 3.2 < $M_{\mu\mu}$ <10 GeV/c²

Invariant mass spectra in peripheral collisions **STAR**

- Significant enhancement with respect to the cocktail in 60-80% centrality collisions
- Consistent with the theoretical calculation

W.M. Zha et al., Phys. Lett. B 800 (2020) 135089

Equivalent Photon Approximation (EPA) method

- Photon is treated as real
- Weizsacker–Williams method to estimate photon flux

p_T distributions in peripheral collisions

- Excesses concentrate below $p_T \approx 0.15 \text{ GeV/c}$
- Data are consistent with hadronic expectation when $p_T > 0.15$ GeV/c
- Theoretical calculation is compatible with data

FAR

Dimuon in low mass region

- TPC+TOF: dimuon measurement in low mass region ($0.4 < M_{uu} < 0.65 \text{ GeV/c}^2$) is ongoing
 - Provide a complementary mass range
 - Help to further improve our understanding of photon induced processes

2020/06/02

Isobaric collisions in 2018

- ${}^{96}_{44}$ Ru vs. ${}^{96}_{40}$ Zr
 - Charge differs by 10%, everything else is almost the same
 - Huge statistics: 3.1B minimum-bias events for each

- 60-80% Au+Au vs. 47-75% Ru+Ru
 - Similar hadronic contribution
 - Different yields from two photon interactions
- Statistics
 - 60-80% Au+Au: ~180M
 - 47-75% Ru+Ru (Zr+Zr): ~840M
- Yield ratio in 0.4-0.76 GeV/ c^2
 - Au : Ru : Zr ≈ 8.11 : 1.46 : 1
 - Difference between Ru+Ru and Zr+Zr: 3.7σ
 - Help to verify and constrain the possible trapped magnetic field

- A significant $\mu^+\mu^-$ enhancement w.r.t. cocktail is observed at very low p_T in peripheral Au+Au collisions at 200 GeV
 - Measured in high mass region 3.2 < $M_{\mu\mu}$ < 10 GeV/c²
 - Excess entirely happens below $p_T \approx 0.15 \text{ GeV/c}$
 - Compatible with the theoretical calculation
- Outlook
 - The low-p_T dimuon measurement in low mass region and using the isobaric data could further improve our understanding of photon induced processes

Thanks for your attention!