Measurements of semi-inclusive γ+jet and hadron+jet distributions in heavy-ion collisions at $\sqrt{s_{NN}} = 200$ GeV with STAR

Yang He
(for the STAR Collaboration)
Shandong University
Recoil jet study in Au+Au collisions exploring

Part 1. Jet suppression with different triggers

Part 2. Jet acoplanarity with different triggers

Part 3. Outlook on jet study in smaller collision systems
Probing QGP through jet-medium interaction

Jet: a collimated spray of hadrons produced by energetic quark or gluon

Jet production calculable in QCD

Consequences of parton-medium interaction
- Jet energy loss
- Acoplanarity
- Substructure modification

Parton energy loss in medium
- Collisional energy loss
- Radiative energy loss

Jet energy loss (yield suppression) and jet acoplanarity (excess jet yield away from back-to-back) can be studied using semi-inclusive recoil jet.
\(\gamma_{\text{dir}}/\pi^0 + \text{jet} \) to study jet energy loss

- Direct-photon (\(\gamma_{\text{dir}} \)) triggers are of great interest as they constrain the scattering kinematics

- Comparison between \(\gamma_{\text{dir}} + \text{jet} \) and \(\pi^0 + \text{jet} \)

\(q/g \) fraction; path length dependence; spectrum shape

Jet quenching observable

\(I_{AA} \) quantifies jet energy loss

\[
I_{AA} = \frac{\gamma^{AuAu}}{\gamma^{pp}}
\]
STAR detector and dataset

Time Projection Chamber (TPC)
- charged particles (|\(\eta\)| < 1, full azimuth)

Barrel Electromagnetic Calorimeter (BEMC)
- trigger on energetic \(\gamma_{\text{dir}}/\pi^0\)

Barrel Shower Maximum Detector (BSMD)
- discriminates \(\gamma_{\text{dir}}/\pi^0\) based on transverse shower profile

Au+Au (2014) and p+p (2009) at \(\sqrt{s_{\text{NN}}} = 200\) GeV
- BEMC trigger (\(E_T^{\text{tower}} \gtrsim 6\) GeV)
- Charged particles: |\(\eta\)| < 1

Ru+Ru and Zr+Zr (2018) at \(\sqrt{s_{\text{NN}}} = 200\) GeV
- Charged particles: |\(\eta\)| < 1
Analysis procedure of recoil jet yield

Discrimination of $\gamma_{\text{dir}}/\pi^0$

Recoil jet yield

Uncorrelated background subtraction

Correction for detector and heavy-ion background effects (Using unfolding)

Transverse Shower Profile (TSP):

$TSP \equiv \frac{E_{\text{cluster}}}{\sum_i e_i r_i^{1.5}}$

E_{cluster}: cluster energy
r_i: distance of the SMD strips from the center of cluster
e_i: individual SMD strip energy
Analysis procedure of recoil jet yield

Discrimination of $\gamma_{\text{dir}}/\pi^0$

- anti-k_T algorithm
- $|\eta_{\text{jet}}| < 1 - R_{\text{jet}}$
- $|\phi_{\text{trig}} - \phi_{\text{jet}}| < \pi/4$

Transverse Shower Profile (TSP):

$$TSP \equiv \frac{E_{\text{cluster}}}{\sum_i e_i r_{i}^{1.5}}$$

- E_{cluster}: cluster energy
- r_i: distance of the SMD strips from the center of cluster
- e_i: individual SMD strip energy

Uncorrelated background subtraction

Correction for detector and heavy-ion background effects (Using unfolding)
Analysis procedure of recoil jet yield

Transverse Shower Profile (TSP):

\[
TSP \equiv \frac{E_{\text{cluster}}}{\sum_i e_i r_i^{1.5}}
\]

- E_{cluster}: cluster energy
- r_i: distance of the SMD strips from the center of cluster
- e_i: individual SMD strip energy

Discrimination of $\gamma_{\text{dir}}/\pi^0$

- anti-k_T algorithm
- $|\eta_{\text{jet}}| < 1 - R_{\text{jet}}$
- $|\phi_{\text{trig}} - \phi_{\text{jet}}| < \pi/4$

Recoil jet yield

Uncorrelated background subtraction

Correction for detector and heavy-ion background effects (Using unfolding)

Mixed-Event (ME) approach
Analysis procedure of recoil jet yield

All ME tracks are fully uncorrelated to estimate combinatorial jet background

\[
\text{jet yield} = \text{Same Event} - f^{ME} \times \text{Mixed Event}
\]

\(f^{ME} \) : normalization factor extracted from data

Mixed-Event (ME) approach

Mixed Event Generation for Jets

- Pick one random track per real event → add to mixed event
- Sample from real event distribution
- Mix only similar centrality (8), \(\Psi_{EE} \) (4), z-vertex position (20)

Courtesy of A. Schmah

STAR Preliminary

Au+Au 200 GeV, 0-15% anti-\(k_T \)

- \(R = 0.2 \)
 - \(9 < E_T^{\text{jet}} < 11 \) GeV [SE]
 - \(11 < E_T^{\text{jet}} < 15 \) GeV [SE]
 - \(15 < E_T^{\text{jet}} < 20 \) GeV [SE]

- \(R = 0.5 \)
 - 2dN/N_{\text{jet}} d^2p_{T,\text{jet}}\)d^0_{\gamma,\text{jet}}

2023/3/30

Yang He (何杨), Hard Probe 2023, Mar. 26-31, 2023, Aschaffenburg
Analysis procedure of recoil jet yield

Transverse Shower Profile (TSP):

\[TSP \equiv \frac{E_{\text{cluster}}}{\sum_i e_i r_i^{1.5}} \]

- \(E_{\text{cluster}} \): cluster energy
- \(r_i \): distance of the SMD strips from the center of cluster
- \(e_i \): individual SMD strip energy

Discrimination of \(\gamma_{\text{dir}}/\pi^0 \)

- anti-\(k_T \) algorithm
- \(|\eta_{\text{jet}}| < 1 - R_{\text{jet}} \)
- \(|\phi_{\text{trig}} - \phi_{\text{jet}}| < \pi/4 \)

Recoil jet yield

Uncorrelated background subtraction

Correction for detector effects and heavy-ion background (Using unfolding)

Mixed-Event (ME) approach

Mapping from “truth” to “measured”

Unfold measured to true jet population
Semi-inclusive recoil jet spectra

Trigger E_T:

π^0: [9, 11], [11, 15] GeV

γ_{dir}: [9, 11], [11, 15], [15, 20] GeV

Statistical errors: dark band

Systematic uncertainty (light band) is dominated by:

- Unfolding procedure
- Tracking efficiency
- Direct photon purity

Dashed line: PYTHIA-8 (MONASH tune)
Recoil jet yield is more suppressed for R=0.2 than R=0.5 indicating jet energy redistribution.
\(\gamma_{\text{dir}} + \text{jet} \) and \(\pi^0 + \text{jet} \) show similar level of suppression.
Recoil jet yield dependence on jet R

- $\Re^{0.2/0.5} < 1$ in p+p collisions due to jet radial profile in vacuum
- $\Re^{0.2/0.5}$ is smaller in Au+Au than in p+p indicating in-medium broadening of jet shower
Semi-inclusive $\gamma_{\text{dir}}/\pi^0+$jet azimuthal correlation

Acoplanarity: recoil jet deflected from $\gamma_{\text{dir}}/\pi^0$ axis

$$\Delta \phi = \phi_{\text{trig}} - \phi_{\text{jet}}$$

Contributions to the azimuthal de-correlation

In vacuum: Sudakov radiation

In medium: multiple soft scattering (p_T broadening) scattering off QGP quasi-particles

Trigger-jet azimuthal correlation distributions

$$\left. \frac{1}{N_{\text{trig}}} \frac{dN_{\text{jet}}}{d(\Delta \phi)} \right|_{E_T^{\text{trig}}} = \left. \frac{1}{\sigma^{\text{AA-}\text{trig}+\text{jet}}} \frac{d\sigma^{\text{AA-}\text{trig}+\text{jet}}}{d(\Delta \phi)} \right|_{E_T^{\text{trig}}}$$

Dijet Angular Correlation at RHIC

- $qL = 0 \text{GeV}^2$
- $qL = 8 \text{GeV}^2$
- $qL = 20 \text{GeV}^2$
$\pi^0 + \text{jet azimuthal correlation in } p+p \text{ collisions}$

$$E_T^{\text{trig}} = [9,11] \text{ GeV/c}$$

$\Delta \phi$ spectra measurements:

$$\frac{1}{N_{\text{trig}}} \frac{dN_{\text{jet}}}{d(\Delta \phi)} \bigg|_{E_T^{\text{trig}}} = \left(\frac{1}{\sigma^{AA\to\text{trig}+\text{jet}}} \frac{d\sigma^{AA\to\text{trig}+\text{jet}}}{d(\Delta \phi)} \right) \bigg|_{E_T^{\text{trig}}}$$

- **R=0.2**
 - $5 < p_T^{\text{jet}} < 10$ GeV/c
 - $10 < p_T^{\text{jet}} < 15$ GeV/c
 - $15 < p_T^{\text{jet}} < 20$ GeV/c
- **R=0.5**
 - $9 < E_T^{\text{trig}} < 11$ GeV

PYTHIA-8 (MONASH tune) is consistent with p+p data
$\gamma_{\text{dir}}/\pi^0+$jet azimuthal correlation in Au+Au collisions

$E_T^{\text{trig}} = [11,15] \text{ GeV/c}$

Evidence for medium-induced acoplanarity in the QGP for $R = 0.5$ jets

Jet deflection in the medium? Medium response? ...

2023/3/30
Yang He (何杨), Hard Probe 2023, Mar. 26-31, 2023, Aschaffenburg
System size dependence of hadron suppression

\[R_{AA} = \frac{1}{N_{\text{ev}}^{AA} T_{AA} d^2 \sigma^{NN} / d\eta d p_T} \frac{d^2 N^{AA} / d\eta dp_T}{N_{\text{ev}}^{AA}} \]

Similar \(R_{AA} \) suppression at comparable \(\langle N_{\text{part}} \rangle \) energy density drives the quenching, rather than the collision geometry.

How about jets?

Talk: Tristan Protzman (Mar. 29th, 15:00)
Poster: Isaac Mooney (HMHC-8)
Outlook on system size dependence of jet quenching

Jet quenching comparison for different collision systems:
gain further insights into parton energy loss dependence on
initial energy density vs. collision geometry

<table>
<thead>
<tr>
<th></th>
<th>0-10%</th>
<th>60-80%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zr+Zr</td>
<td>~454 k</td>
<td>~60 k</td>
</tr>
<tr>
<td>Ru+Ru</td>
<td>~457 k</td>
<td>~62 k</td>
</tr>
</tbody>
</table>

Trigger statistics for 7 < p_{T, trig} < 25 GeV/c

Ongoing measurement...
Summary

• Au+Au
 \(I_{AA} \) are consistent between \(\gamma_{\text{dir}} + \text{jet} \) and \(\pi^0 + \text{jet} \)
 \(\mathcal{R}^{0.2/0.5} \) demonstrate intra-jet broadening

• h+jet study in Zr+Zr and Ru+Ru is ongoing

• \(\Delta \phi \) distributions of \(\gamma_{\text{dir}}/\pi^0 + \text{jet} \) in Au+Au:
 observed excess of jet yield away from back-to-back
 Jet scattering?
 Medium scattering?

2023/3/30

Yang He (何杨), Hard Probe 2023, Mar. 26-31, 2023, Aschaffenburg