

Debasish Das UC Davis (For the **STAR Collaboration**)

Quarkonia and the concept of suppression

Charmonia: J/ψ , Ψ' , χ_c **Bottomonia**: Υ (1S), Υ' (2S), Υ'' (3S)

Heavy quarks carry information of early stage of collisions: ≻Charm and bottom quarks are massive.

≻Formation takes place only early in the collision.

STAR

Proposed Signature of De-confinement :

Color screening of static potential between heavy quarks: J/ ψ suppression: Matsui and Satz, *Phys. Lett. B* **178** (1986) 416 Suppression determined by T_C and binding energy Lattice QCD: Evaluation of spectral functions \Rightarrow T_{melting}

De-confinement → Color screening → heavy quarkonia states "dissolved"

state	χ_c	ψ'	J/ψ	Υ'	χ_b	Υ
T_{dis}	$\leq T_c$	$\leq T_c$	$1.2T_c$	$1.2T_c$	$1.3T_c$	$2T_c$

models based on potential with largest possible binding \Rightarrow most bound states melt by 1.3T_c.Upsilon (1S) survives until 2T_c. Lattice results are consistent with quarkonium melting.

Upper limit melting temperatures T/T_{c}^{-} 1/ $\langle r \rangle$ [fm⁻¹] Υ**(15)** χ_b(1P) J/ψ(1S) Ύ(2S) χ_b'(2P) Υ"(3S) χ_c(1P) Ψ'(2S) The QGP thermometer (courtesy: A .Mocsy, 417th WE-Heraeus-Seminar,2008)

Suppression pattern \Rightarrow **thermometer** of QCD matter.²

Υ states in RHIC

Υ (**1S**), Υ '(2**S**), Υ''(3**S**)

> Υ (1S) perhaps not melting at RHIC \Rightarrow standard candle (reference) > Υ '(2S) likely to melt at RHIC (analogous to J/ ψ) > Υ ''(3S) melts at RHIC (analogous to ψ ')

Pros

 > co-mover absorption is very small (C.M.Ko PLB 503, 104)
> recombination negligible at RHIC (σ_{bb} << σ_{cc})
> STAR has efficient Y trigger and large acceptance

Cons

- Extremely low rate 10⁻⁹/minimum-bias pp interaction
- >need good resolution to separate the three S-states

 Υ measurements at RHIC \Rightarrow challenge to understand such rare probes 3

STAR Y Mass Resolution

- STAR detector is able to resolve individual states of Υ , albeit Bremsstrahlung
- ➤ With current low statistics, yield is extracted from combined Y(1S+2S+3S) states
- \succ FWHM ~ 400 MeV/c²

STAR

Current ongoing analysis without inner tracker for Run-8 d+Au !!

STAR Detectors used for Υ measurements

BEMC

 \blacktriangleright Acceptance: $|\eta| < 1$, $0 < \phi < 2\pi$

➢ High-energy tower trigger ⇒ enhance highp_T sample

Essential for quarkonia triggers

 Υ trigger \rightarrow enhances electrons

- ➢ Use TPC for charged tracks selection
- Use BEMC for hadron rejection
- Electrons identified by dE/dx ionization energy loss in TPC
- Select tracks with TPC, match to BEMC towers above 3 GeV

STAR Υ Trigger (p+p 200 GeV in Run 6)

STAR

Integrated luminosity $\approx 9 \text{ pb}^{-1}$ in run 6

STAR Y Trigger (Au+Au 200 GeV in Run 7)

Υ_s in Run 6 p+p at \sqrt{s} =200 GeV: Invariant Mass

- ➢ Signal + Background ⇒ unlike-sign electron pairs
- ▶ **Background** \Rightarrow like-sign electron pairs
- > Υ (1S+2S+3S) total yield : integrated from 7 to 11 GeV

from **background-subtracted** m_{ee} distribution

- Peak width consistent with expected mass resolution
- > Significance of signal is 3σ
- ➢ Note: Contribution from Drell-Yan (~9%) ignored

STAR Υ vs. Theory and World Data

Ys in Au+Au at $\sqrt{s_{NN}} = 200 \text{ GeV}$ (Run 7)

First **Rough Look**: Using identical cuts as in p+p analysis.

- **Pros** : allows "apples-to-apples" comparison with p+p.
- **Cons** : not optimal for Au+Au

STAR

- larger background, different trigger thresholds

 \mathbf{R}_{AA} : Upper Limit $\Rightarrow \mathbf{R}_{AA} < 1.3$ at 90% CL

Υ s in Au+Au at $\sqrt{s_{NN}} = 200$ GeV (Run 7)

Improved Analysis:

Pros : improved EMC-track-trigger handling

 \Rightarrow strong signal and enhanced S/B (~ factor of 5!)

Trigger efficiency and systematic checks are in progress.

> Strong 4σ signal.

> First measurement of Υ in nucleus-nucleus collisions ever.

> R_{AA} measurement in progress.

Summary and Outlook

- > Full BEMC + trigger \Rightarrow quarkonium program in STAR
- > Run 6: mid-rapidity measurement of $\Upsilon(1S+2S+3S)$ →e⁺e⁻ cross section at RHIC in p+p collisions at \sqrt{s} = 200 GeV
- > $BR_{ee} \times (d\sigma/dy)_{y=0} = 91\pm 28(stat.)\pm 22(syst.) pb$
- STAR Y in p+p measurement is consistent with pQCD and world data
- Run 7: We have the first proof-of-principle Y measurement results in heavy ion collisions for 200 GeV Au+Au
- Strong signal

STAR

> Soon : R_{AA} of Υ

- Run 8: measurement in d+Au , ongoing analysis!
- Absolute cross-section in p+p, d+Au, and Au+Au.