- Probing gluon structure with J/ψ photoproduction in isobaric
- ultra-peripheral collisions at $\sqrt{
 m s_{NN}}=200~{
 m GeV}$ with the STAR

Zengzhi Li (for the STAR Collaboration)

South China Normal University

In ultra-peripheral collisions (UPCs), coherent J/ψ photoproduction has been recognized as one of the most sensitive probes of the nuclear gluon distribution. Recently, STAR published differential measurements on photoproduced J/ψ in ultra-peripheral d+Au and Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV. These results provide important constraints on gluon distribution functions and sub-nucleonic shape fluctuations in both light and heavy nuclei. Compared to d+Au and Au+Au collisions, the collision system size in isobaric 10 collisions $\binom{96}{44}Ru + \frac{96}{44}Ru$ and $\frac{96}{40}Zr + \frac{96}{40}Zr$) lies in between. Therefore, the measurement of coherent J/ ψ photoproduction in isobaric UPCs offers a unique opportunity to study 11 12 the system size dependence of gluon structure. 13 In this talk, we present the differential cross sections of photoproduced coherent J/ψ as a function of rapidity (y) in ${}^{96}_{44}Ru~({}^{96}_{40}Zr) + {}^{96}_{44}Ru~({}^{96}_{40}Zr)$ UPCs at $\sqrt{\rm s_{NN}} = 200$ GeV. 15 The results will also be shown for different combinations of neutron emission, where 16 neutrons are detected by zero degree calorimeters, which help resolve the photon-gluon 17 emitter ambiguity. More importantly, these data provide crucial constraints on the system 18 size dependence of the gluon structure within nuclei in the kinematic range x_{parton} , the momentum fraction carried by the gluon, $\sim 0.015 - 0.03$. The results are compared with theoretical model calculations and previous STAR measurements, and the physics implications are discussed.