D Meson Measurements in Au+Au Collisions in STAR using the Silicon Inner Tracker

Sarah LaPointe

Wayne State University for the STAR Collaboration

Hot Quarks June 21-26th, 2010

Outline

- Why should we study heavy flavors?
- Energy loss of heavy flavor non-photonic electrons
- D-Meson measurements
 - D^0 in Cu+Cu collisions
 - Secondary vertexing technique using the SVT+SSD
- Conclusions/Outlook

Charm Production and the QGP

At RHIC collisional energies, charm is produced predominantly from initial gluon fusion.

Z. Lin and M. Gyulassy, Phys. Rev. C 51 42177 (1995).

- Charm scales with number of binary collisions
- Charm produced in early stages of the collision, before thermalization

This makes charm an excellent probe of the medium

Energy Loss

Initially it was thought that the energy loss for charm quarks would be smaller than that of lighter flavors. Gluon radiation for a massive parton is suppressed at angles $< M_q/E_q$ - dead cone effect. Yu. Dokshitzer and D.E. Kharzeev, Phys.Lett. B **519** 199-206 (2001).

However, recent measurements have shown otherwise.

B. Abelev et al (STAR), Phys. Rev. Lett. **98** 192301 (2007)

Cross section

QCD (NLO/FONLL) used to predict charm cross section in p+p. A deviation from the prediction in Cu+Cu and Au+Au would indicate medium effects. M. Cacciari, P. Nason, R. Vogt, Phys. Rev. Lett. **95**, 122001 (2005)

Sarah LaPointe

Charm Hadronization

4

Measuring Heavy Mesons

Semi-leptonic Channels B.R. (%)

- $D^0 \rightarrow e^+ + anything$ 6.5
- $D^{\pm} \rightarrow e^{\pm} + anything$ 16.0
- $B^0 \rightarrow e^+ + anything$ 10.1

Hadronic Channels B.R. (%)

- $D^0 \rightarrow K\pi$ 3.8
- $D^{\pm} \rightarrow K\pi\pi$ 9.2
- $D_s \rightarrow \phi \pi$ 4.4

Techniques used to measure open charm: Single electrons (TPC+EMC) Hadronic decay (TPC+Silicon Inner Tracker)

Sarah LaPointe

Non-photonic e[±] - Energy Loss

Model predictions

- I radiative E loss via hard scatterings
- II radiative E loss via multiple soft collisions

Heavy quarks at RHIC may be experiencing collisional E loss!

- III collisional and radiative E loss
- IV E loss by elastic scatterings

Once again, the calculation does under-predict the suppression observed.

- V III but for charm alone
- VI Collisional dissociation, multiple times

- Similar magnitude of suppression as light flavor in Au+Au collisions ($p_T > 6 \text{ GeV}$)
- What is beauty contributing to the heavy flavor non-photonic e^{\pm} .
- A significant contribution \Rightarrow energy loss for beauty is greater than expected
- There has not been a D or B measurement in STAR at high pt

Beauty's Contribution

How much is beauty contributing?

- Because charm and beauty are heavy, pQCD can be used to predict their production
- FONLL predicts beauty contribution to become comparable to charm near 5 GeV/c

Hadronic Reconstruction of D Mesons

Two methods for measurement

1. **TPC:**

- Primary track pairs
- dE/dx from TPC to Id K and π
- Invariant mass analysis
- Extract signal after a **mixed event or rotated** background has been subtracted

2. TPC+SVT+SSD:

- Global track pairs
- dE/dx from TPC to Id tracks
- Invariant mass analysis, also require the tracks to have a crossing point → secondary vertexing technique
- Geometrical cuts from the decay

 Increase signal to background

Sarah LaPointe

D^0 in Cu+Cu Collisions at 200 GeV

Mixed Event Analysis

Combine all pairs from the same event

Combine pairs from different events

Same event spectra – Mixed event spectra

10²

STAR Preliminary

√s_{NN} = 200 GeV

Au+Au Central 12%

NLO in p+p

 10^{3}

The STAR Silicon Inner Tracker (SVT+SSD)

Secondary Vertex Reconstruction

Mean lifetime of D-Mesons ct for $D^0 \sim 123 \ \mu m$ $c\tau$ for $D^+\sim 312~\mu m$

*most decay vertices lie within a few mm of the primary vertex

What do we need?

Pointing resolution (σ_{xy}) needs to be comparable to decay length

TPC alone $\sim 2.6 \text{ mm}$ @ p = 1 GeV/c TPC+SVT+SSD $\sim 210 \ \mu m$

Sarah LaPointe

Geometrical Distributions

D⁰ in Au+Au 200 GeV Collisions

23 M minimum bias events

Track cuts:

- p > 200 MeV/c
- TPC hits ≥ 20
- SVT hits ≥ 2
- PID from dE/dx

Optimized geometrical cuts:

- D0 decay length < 200 μ m
- D0 DCA to PV < $300 \ \mu m$
- DCA Daughters < 200 µm

* background estimated using a 4th order polynomial fit to 'side bands'

$D \rightarrow K + \pi + \pi$ Reconstruction

Method

1. Find two $K\pi$ pairs

2. Require pair #1 and #2 to have the same K

3. Require pair #1 and #2 to not have the same π

Advantages over D⁰ measurement

- Branching Ratio = 9.8% (factor ~3 larger than $D0 \rightarrow K+\pi$)
- Greater mean lifetime, 312 µm
- Mean lifetime above resolution of the detectors

One disadvantage - background increases (3 track requirement)

First results look promising !

Hot Quarks 2010 La Londe les Maures, France

Sarah LaPointe

$D_s \rightarrow \phi + \pi$ Reconstruction

The mean lifetime = 149.9 μ m D_s $\rightarrow \phi \pi$, with $\phi \rightarrow K^+K^-$ B.R. = 2.18% ϕ mean lifetime ~ 45 fm

Subtract off background using K^+K^- that have invariant mass away from ϕ peak

D_s in Au+Au Collisions

* D^{\pm} yield estimated using e⁺e⁻ data. D^0/D^{\pm} not predicted to change

Sarah LaPointe

Conclusions

- Heavy flavor electrons exhibit a similar suppression to that of the light hadrons. New models are needed help better understand heavy quark energy loss.
- First D-Meson measurements in heavy ion collisions using secondary vertexing technique. May contribute to determination of D and B contribution to NPE spectrum and offer insight of charm's interaction with the QGP
- Preliminary D_s measurement from secondary vertexing hints at statistical hadronization