

Dec 1, Hadron09, Tallahassee

Outline

- New opportunity for spectroscopy with Relativistic Heavy-Ion Collider and STAR
- Glueball search in Double Pomeron Exchange
- Some experimental details and rate estimates

Outlook

Relativistic Heavy Ion Collider (RHIC): <u>THE QCD Factory</u>

OCD is the theory of strong interaction: "Theoretical evidences" vs. current and future Experimental QCD measurements at RHIC

- Deconfinement/phase of QCD QGP
- Distribution of spin in the nucleon Spin sum rule
- Parton splitting limit Saturated gluon state (Color Glass Condensate...)
- Gluonic degree of freedom in Hadrons Exotica (glueballs...)
- Nature of diffractive processes –
- structure of Pomeron, Odderon...

RHIC as $p^{\uparrow}p^{\uparrow}$ Collider

The STAR experiment at RHIC

Large Acceptance Detector running since 2000

- **D** High resolution tracking device: TPC in $-1 < \eta < 1$, $-\pi < \phi < \pi$
- Forward rapidity gap veto
 - FTPC: 2.5<|η|<4.2, BBC: 3.8<|η|<5.2
- Excellent particle identification capability: TPC dE/dx, ToF

Dec 1 Hadron09

Forward Proton Tagging

- Roman Pot detectors to measure forward scattered protons in diffractive processes
 - Staged implementation to cover wide kinematic coverage
 - Phase I (Installed): for low-t coverage
 - Phase II (planned) : for higher-t coverage

Roman Pots used (2002-2003) for pp2pp experiment at RHIC

Dec 1 Hadron09

Roman Pots in STAR (Phase I)

Program with tagged forward protons at RHIC studying:

 Elastic scattering for understanding structure of Pomeron and Odderon (+single diffraction)

Central production for searching for glueballs in Double Pomeron Exchange (DPE) processes

Inelastic Process: DPE $p_1p_2 \rightarrow p_{1'}M_Xp_{2'}$

- Exclusive process with "small" momentum transfer: $-t_1(p_1 \rightarrow p_1)$ and $-t_2(p_2 \rightarrow p_2)$
- M_X is centrally (nearly at rest) produced via a Double Pomeron Exchange/Fusion
- In pQCD, Pomeron is considered to be made of two gluons: natural place to look for gluon bound state
- □ $M_X(~1 3 \text{ GeV/c}^2) \rightarrow \pi^+\pi^-, \pi^+\pi^-\pi^+\pi^-, K^+K^-$
- □ Lattice cal.: Lightest glueball M(0⁺⁺)=1.5-1.7 GeV/c²
- Search for glueball (gg) candidates in M_x
- Candidates with conventional quantum numbers: need (kinematic) "filtering"

DPE Central Production at RHIC

Pomeron-Pomeron dominant

• $\sigma_{RR} \sim S^{-2}$, $\sigma_{RP} \sim S^{-1}$, $\sigma_{PP} \sim \text{const.}$ (or s^x where $x \sim O(0.1)$)

Wide rapidity gap

- Beam rapidity at $\sqrt{s} = 500 \text{ GeV}$: $y_{\text{beam}} \sim 6.3$
- \blacksquare M_X < 3 GeV/c² will have a rapidity gap > 4 units

Higher reach in M_x

- 200 GeV: M_{x max} ~ 10 GeV/c²,
- 500 GeV: M_{x max}~ 25 GeV/c²

Polarization dependence of DPE: provide extra constraint for theoretical interpretation Central Production Spectroscopy experiments/publications

- **D** Many measurements in $\sqrt{s} \sim 10-60$ GeV
 - Fixed Target
 - CERN Ω (~1990)
 - ₀ WA76 (√s = 12.6 GeV), WA91(23.7), WA102(29.1)
 - CERN GAMS ($\sqrt{s} = 29.1$) (~1990)
 - FNAL E690 (√s=38.8) (~1990)
 - Collider
 - ISR AFS R807 ($\sqrt{s} = 62$) (~1980)
- In this energy range, likely significant Reggeon-Reggeon contribution: difficulties in interpretations

Quantum number "filter" for Pomeron-Pomeron (PP)

- Pomeron has vacuum Quantum number (P=C=+1, colorless)
- DPE cannot produce
 I=1 state such as
 ρ(770) (Isospin conservation)
 - B=Q=S=0, I^GJ^{PC} = 0⁺even⁺⁺
 - f_J(1710) 0⁺even⁺⁺

. . .

- □ Coupling of the exchange particles to the final state mesons for gluon exchange (small dp_T) and quark exchange (large dp_T)
- Filtering angular momentum?
- Spin-dependence of the coupling can be studied at RHIC

Dec 1 Hadron09

"filter": WA102 ($\sqrt{s}=29$ GeV)

Fig. 3. K^+K^- mass spectrum for a) $dP_T < 0.2$ GeV, b) $0.2 < dP_T < 0.5$ GeV and c) $dP_T > 0.5$ GeV and the $\pi^+\pi^-\pi^+\pi^-$ mass spectrum for d) $dP_T < 0.2$ GeV, c) $0.2 < dP_T < 0.5$ GeV and f) $dP_T > 0.5$ GeV.

342

J.H. Lee

Roman Pots at STAR (Phase I)

Beam transport simulation using Hector

- Phase I: 8 Roman pots at ±55.5, ±58.5m from the IP
- Require special beam tune : large β* (21m for √s=200 GeV) for minimal angular divergence
- Successful run in 2009: Analysis in progress focusing on small-t processes (0.002<|t|<0.03 GeV²)

Roman Pots (Phase II)

- Phase II: 8(12) Roman Pots at ±15 and ±17m
- Planed to be implemented in 2011-2012
- Doesn't require special beam optics: main set-up for central DPE processes requiring wide-t coverage and high-luminosity
- 2π coverage in φ will be limited due to machine constraint (incoming beam)

t-Acceptance of Roman Pots

Phase I set-up focuses on low-t (installed)
 Phase II covers higher-t range (planned)

Trigger and Data Reconstruction

Trigger

- Elastic (collinear) and inelastic trigger
- Multiplicity trigger using TOF barrel for selecting low multiplicity (0<N<6) central events as used in STAR UPC Trigger
- Rapidity gap trigger using Beam-Beam counters

Reconstruction

- Scattered proton momentum momentum reconstruction using RPs and beam transport
- STAR TPC tracking in |y|<1 with TOF barrel and TPC PID (π/K separation up to ~1.6 GeV/c)

Ultra-Peripheral Collision (UPC) program with AuAu in STAR

Complementary program with central production in p+p

- Spectroscopy in photoproduction
- Common machinery: trigger, data reconstruction...

Mass dependent acceptance

 \square ~5-10% in ~1<M_x<2

- High mass range limited by ToF PID
- Lower mass range limited by track reconstruction at low momentum

Dec 1 Hadron09

Acceptance and PID for decaying particles

• Accepted phase-space in $y-p_T$ for π from M_X decaying to $\pi^+\pi^-\pi^+\pi^-$ (No isobar assumed)

dp_T-dependent accepted yield

dp_T = |p_{T1} - p_{T2}| for the "kinematic filter"
 No significant dp_T-dependence in shape of the acceptance in M_x > 1 GeV/c²

Dec 1 Hadron09

Expected yields as function of M_X

- Expected reconstructed phase-space including 140 μbarn DPE Cross-section and branching ratios measured at ISR per 25M DPE events
- \square M_x=1-3 GeV/c² is kinematically well accessible in pion and Kaon decay channels
- Expected Trigger rate for DPE: ~100 Hz at $\mathcal{I}=1x10^{31}cm^{-2}s^{-1}$
- **2** 20 Week RHIC running: ~2M K⁺K⁻ ~6M $\pi^+\pi^-\pi^+\pi^-$ sample
- Phase I setup is expected to produce an exploratory data sample of ~100K $\pi^+\pi^-$ with 5 days of running with special beam tune ($\beta^*=21m$) in July of 2009

- $1.2 < M(KK\pi) < 1.6 \text{ GeV/c}^2 \text{ assuming cross}$ -
- section of ~5µbarn (PLB 489 (2000))

Dec 1 Hadron09

Summary

New program to search for glueball with the STAR detector at RHIC

- At high energy where Pomeron-Pomeron interaction is expected to be dominant with clean rapidity gap with DPE
- Using large acceptance and high resolution detector
- With polarized high luminosity beam

Looking forward to rich spectroscopy and diffractive programs with staged Roman Pot implementation at STAR

New collaborators are WELCOME!

Backup Slides

Summary of the Existing Elastic Data (unpolarized)

Highest energy so far:

- pp: 62 GeV (ISR)
- pp: 1.8 Tev (Tevatron)
- **RHIC** energy range:
 - 50 GeV $\leq \sqrt{s} \leq$ 500 GeV
- Elastic measurements: Details on the nature of elastic scattering at the energy are NOT well understood in the energy range: Unique measurements in wide trange with polarized beams

Can Odderon be identified at RHIC?

Odderon is a counterpart of Pomeron (C=1) with C=-1: "RHIC is the machine to find it" (E. Leader, Odderon Workshop (2005)) by measuring

•
$$\Delta \sigma_{pp} - \Delta \sigma_{pbarp} \neq 0 \ (\sim 3mb)$$

•
$$d\sigma/dt_{pp} \neq d\sigma/dt_{pbarp}$$

- Shape of Asymmetries: A_{NN}
- Centrally produced C=-1 particle

Diffraction at RHIC: pomeron dominant?

RHIC energy Pomeron-Pomeron dominant (small Reggion contribution)

Inclusive Double Pomeron interaction at

Fig. 3. Invariant mass distributions for the central π^+ π^- , $2\pi^+$ $2\pi^-$, and $3\pi^+$ $3\pi^-$ systems from reactions (1–3) respectively (in µb per 100 MeV bin). This figure, and all subsequent figures, show data which have been acceptance corrected