Azimuthal distributions of Righ-pt direct γ and π^{0} w.r.t reaction plane at STAR

Ahmed Flamed
Forthe S्र्रTAR Collaboration

Hot Quarks 2010
 La Londe Ces Maures, 21-26tR June, 2010

Ahmed Hamed
(Texas A\&M University)

eleiptic flow at low pt

$>$ The azimuthal distributions of the produced particles in heavyion collisions are considered to be sensitive to the initial geometric overlap of the colliding nuclei.

$$
\varepsilon=\frac{\left\langle y^{2}-x^{2}\right\rangle}{\left\langle y^{2}+x^{2}\right\rangle}
$$

$d N / d \phi \propto 1+\sum_{n} 2 v_{n} \cos n\left(\phi-\Psi_{R P}\right)$
$>$ Eccentricity in spatial coordinate is preserved and mapped into the momentum coordinates if the produced particles are not freely streaming.
$>$ At low p_{T} the produced particles are not freely streaming and the collectivity is built even before hadronization.
Non-flow

$$
\left.\cos 2\left(\phi_{p_{t}}-\phi_{i}\right)\right\rangle=M v_{2}\left(p_{t}\right) \bar{v}_{2}+\{\text { non-flow }\}
$$

ECliptic flow at high pt

V_{2} at high p_{T} is finite positive!
Jet quenching : energy loss dependence of path length

$>$ Azimuthal anisotropy at large p_{T} seem to be too large for a pure "jet quenching" Phys. Rev. C. 66, 027902 (2002)
$>$ Surface emission is not consistent with the measured value of elliptic flow at high p_{T} Phys. Rev. Lett. 93 (2004) 252301

Why ecliptic flow of direct photons?

$>\mathrm{v}_{2}$ of electromagnetically interacting particles.
$>\mathrm{v}_{2}$ measurements at higher p_{T}.
$>$ Production mechanisms of photons

$>$ Path length dependence of parton energy loss.

$\mathrm{V}_{2}<0$: Particles preferred to traverse through the longer path "out-of-plane"
$\mathrm{V}_{2}=0$: No preferred direction w.r.t. reaction plane
$\mathrm{V}_{2}>0$: Particles preferred to traverse through the shorter path "in-plane"

STAR LO production of direct γ and fragmentation γ
Direct photons

Annihilation

Very challenging measurements due to the S / B ratio, π^{0} is the major source of bg .
$>$ The Compton-scattering process

$$
\rightarrow \gamma / \pi^{0}>\alpha_{\mathrm{em}}
$$

Eragmentation photons
Fragmentation photons $\gamma^{\text {frag }}$

Example of Bremsstrahlung diagramsThe sub-process of $\gamma^{\text {frag }}$ is of order of $\mathrm{O}\left(\alpha_{s}{ }^{2}\right)$ but its yield is comparable to $\gamma^{\mathrm{dir}} \mathrm{LO}$ process $\mathrm{O}\left(\alpha_{\mathrm{s}} \alpha_{\mathrm{em}}\right)$.The $\gamma^{\text {frag }}$ contribution is expected to fall off more rapidly in x_{T} than the other lowest order of $\gamma^{\text {dir }}$. (G. Sterman et al. Rev. Mod. Phys. 67, 157 (1995))$\gamma^{\text {frag }} / \gamma^{\text {dir }} \sim 30-40 \%$ at $\mathrm{p}^{\gamma}>8 \mathrm{GeV} / \mathrm{c}$ at mid-rapidity at RHIC energy. D. De Florian and w , Vogelsang, Phys. Rev. D72, 014014 (2005)

Methods of $\gamma^{\text {dir }}$ measurements

\checkmark Standard Method

1. Measure inclusive photons.
2. Reconstruct other sources of photons "hadrons"!
3. Subtract photons from decay of π^{0}, η etc.

PHENIX is well-adapted for this method due to the calorimeter granularity and the distance between the calorimeter to the interaction point $\rightarrow \pi^{0}$ reconstruction in central $\mathrm{Au}+\mathrm{Au}$ up to $\mathrm{p}_{\mathrm{T}} \sim 20 \mathrm{GeV} / \mathrm{c}$
$>$ Limited at very high p_{T}, effective method for both symmetric and asymmetric hadron decays

\checkmark Transverse Shower Profile Method

STAR is well-suited for the transverse shower shape analysis due
to the Shower Maximum Detector $\rightarrow \gamma / \pi^{0}$ discrimination up to $\mathrm{p}_{\mathrm{T}} \sim 26 \mathrm{GeV} / \mathrm{c}$. M. Beddo et al., Nucl. Instrum. Meth. A499, 725 (2003)
$>$ Effective at very high p_{T}, but limited only for the symmetric hadron decays

1. Electromagnetic neutral cluster $\left(\pi^{0}, \eta, \rho^{0}, \omega, \ldots, \gamma^{\mathrm{frag}}, \gamma^{\mathrm{dir}}\right)$
2. Reaction plane measurements

3. Transverse shower profile to obtain sample rich/free of $\gamma^{\text {dir }}$
4. Obtain V_{2} of γ^{dir}

STAR STAR detector and on-line $\gamma-r i c h ~ e v e n t ~ s e l e c t i o n s ~$

1γ-triggered event each 5k minbias event $\rightarrow \sim 500 \mu \mathrm{~b}^{-1}$ of AuAu 2007 @ 200 GeV 6 k events of minimum bias trigger

\wedge STAR detector and off-line nentral cluster selections

\checkmark Select neutral clusters "triggers" (BEMC-BSMD) using charged-particle veto (TPC)

vertex within $\pm 55 \mathrm{~cm}$ of the center of TPC.
At least one cluster with $\mathrm{E}_{\mathrm{T}}>8 \mathrm{GeV}$, Esmd $\eta>0.5 \mathrm{GeV}$, Esmd $\phi>0.5 \mathrm{GeV}$, and no track with $\mathrm{p}>3 \mathrm{GeV} / \mathrm{c}$ pointing to that cluster.

In $\mathrm{Au}+\mathrm{Au}: 28 \%$ of the integrated luminosity
has $\mathrm{E}_{\mathrm{T}}>8 \mathrm{GeV}$ of which 96.5% left at least 0.5 GeV on each planes of SMD of which 93% has no track with $\mathrm{p}>3 \mathrm{GeV} / \mathrm{c}$ pointing to it.

Event plane from TPC

$$
\psi=\frac{1}{2} \tan ^{-1}\left(\frac{\sum_{i} \sin \left(2 \delta_{i}\right)}{\sum_{i} \cos \left(2 \delta_{i}\right)}\right)
$$

Shift method for event plane flattening

$$
\Psi^{\prime}=\Psi+\sum_{n} \frac{1}{n}[-\langle\sin (2 n \Psi)\rangle \cos (2 n \Psi)+\langle\cos (2 n \Psi)\rangle \sin (2 n \Psi)]
$$

Sub-event method for reaction plane resolution

$$
\sigma_{\mathrm{RP}}=C \sqrt{<} \cos \left[2\left(\psi^{A}-\psi^{B}\right)\right]>, C=\sqrt{2}
$$

$\underline{\mathbf{v}}_{2}$ of charged and neutral particles

$$
\begin{gathered}
v_{2}^{\text {track,obs }=}<\cos \left(2 \phi_{\text {track }}-2 \psi\right)> \\
v_{2}^{\text {neutral,obs }=}<\cos \left(2 \phi_{\text {tower }}-2 \psi\right)> \\
v_{2}=\frac{v_{2}^{o b s}}{\sigma_{\mathrm{RP}}}
\end{gathered}
$$ 10-40\% AuAu @ $\sqrt{\mathbf{s}}=200 \mathrm{GeV}$

$v_{2}(E P$ off $-\eta)$ reproduces the $v 2\{4\}$ quite well 10-40\% AuAu @ $\sqrt{\mathbf{s}}=200 \mathrm{GeV}$

v_{2} of charged particles is $\sim 15 \%$ in $10-40 \%(\mathrm{AuAu} @ 200 \mathrm{GeV})$ and constant in pt ($8-16 \mathrm{GeV} / \mathrm{c}$) 10-40\% AuAu @ $\sqrt{\mathbf{s}}=200 \mathrm{GeV}$

v_{2} of neutral particles is $\sim 10 \%$ in $10-40 \%(\mathrm{AuAu} @ 200 \mathrm{GeV})$ and constant in pt ($8-16 \mathrm{GeV} / \mathrm{c}$)

STAR ECCiptic flow of nentral/charged particles at high pt 10-40\% AuAu @ $\sqrt{\mathbf{s}}=200 \mathrm{GeV}$

v_{2} of neutral particles is less than v_{2} of charged particles due to direct photons contributions

How to separate $\gamma^{\text {dir }}$ from nentral ©g.

$\sim 10 \%$ of all $\pi^{0}(8-16 \mathrm{GeV} / \mathrm{c})$ decay asymmetrically with one gamma has $\mathrm{p}_{\mathrm{T}}>8 \mathrm{GeV} / \mathrm{c}$ within STAR-BEMC acceptance.
η causes similar level of background as asymmetric π^{0}.

Either to reconstruct π^{0} or to use the transverse shower shape analysis to distinguish between π^{0} and γ^{dir}

STAR BEMC and BSMD

The two photons originated from π^{0} hit the same tower at $\mathrm{p}_{\mathrm{T}}>8 \mathrm{GeV} / \mathrm{c}$
The shower shape is quantified with the cluster energy, measured by the BEMC, Normalized by the position-dependent energy moment, measured by the BSMD strips.

Shower Profile of single γv s. two close γs

The probability distribution is peaked at smaller value in AuAu than in pp due to the larger relative fraction of $\gamma^{\text {dir. }}$

The rejection power of direct photons is $\sim 90 \%$
 10-40\% AuAu @ $\sqrt{\text { s }}=200 \mathrm{GeV}$

v_{2} of $\gamma^{\text {rich }}<\mathrm{v}_{2}$ of π^{0} as expected

Obtain v2 of direct photons

\oplus Select EM neutral clusters
\oplus Use the transverse shower shape to select $\gamma^{\text {dir }}$ free (π^{0}-rich) sample and $\gamma^{\text {rich }}$ sample from the neutral clusters.

$$
\begin{gathered}
v_{2}^{\gamma_{\text {rich }}} N^{\gamma_{\text {rich }}}=v_{2}^{b g} N^{b g}+v_{2}^{\gamma_{d i r}} N^{\gamma_{d i r}} \\
\mathcal{R}=\frac{N^{b g}}{N^{\gamma_{r i c h}}} \simeq \frac{N^{\pi^{0}}}{N^{\gamma_{r i c h}}} \\
v_{2}^{\gamma_{\text {direct }}}=\frac{v_{2}^{\gamma_{r i c h}}-v_{2}^{b g} \mathcal{R}}{1-\mathcal{R}} \\
v_{2}^{\gamma_{\text {direct }}}=\frac{v_{2}^{\gamma_{\text {rich }}}-v_{2}^{\pi^{0}} \mathcal{R}}{1-\mathcal{R}}
\end{gathered}
$$

STAR ECCiptic flow of $\pi^{0}, \gamma^{d i r}$, charged particles at high pt 10-40\% AuAu @ $\sqrt{\mathbf{s}}=200 \mathrm{GeV}$

v_{2} of non decay γ is $\sim 1 / 3$ of v_{2} of π^{0} and charged particles
v_{2} of non decay γ is not zero and not negative

STAR ECCiptic flow of $\pi^{0}, \gamma^{d i r}$, charged particles at high pt 10-40\% AuAu @ $\sqrt{\mathbf{s}}=200 \mathrm{GeV}$

$\boldsymbol{> c} 0.5$
v_{2} of non decay γ is $\sim 1 / 3$ of v_{2} of π^{0} and charged particles
v_{2} of non decay γ is not zero and not negative

Summary

- The geometrical effect of the medium can be probed by the elliptic flow measurement
- Finite and +ve value of v_{2} persist up to $\mathrm{pt}=16 \mathrm{GeV} / \mathrm{c}$ for charged and neutral particles
- STAR has reported the first "preliminary" results of non decay photons elliptic flow at high pt at RHIC
- No sign of negative v_{2} of non decay photons
- Statistically significant value of $+\mathrm{ve} \mathrm{v}_{2}$ of non decay photons
- The v_{2} at high pt can not be interpreted as path length dependence of energy loss

Backup slides

Reaction plane

Only shift method is used to flatten the RP up to the $20^{\text {th }}$ harmonic:

$$
\Psi^{\prime}=\Psi+\sum_{n} \frac{1}{n}[-\langle\sin (2 n \Psi)\rangle \cos (2 n \Psi)+\langle\cos (2 n \Psi)\rangle \sin (2 n \Psi)]
$$

Reaction plane is flat "cos and $\sin \sim 0$ "

Previous measurements of v2($\gamma^{\text {dir })}$ at RHJC Phys. Rev. Lett96 (2006) 032302

$$
\begin{aligned}
& v_{2}^{\text {inclusive } \gamma}=\frac{v_{2}^{\text {direct } \gamma} N_{\text {direct } \gamma}+v_{2}^{b . g .} N_{\text {b.g. }}}{N_{\text {direct } \gamma}+N_{\text {b.g. }}} \quad \sigma_{\mathrm{RP}}=\left\langle\cos \left(2\left(\Phi_{\text {measured }}-\Phi_{\mathrm{RP}}\right)\right)\right\rangle \text { is } 0.3 \\
& \text { PHENIX BBC: } 3.1<|\eta|<3.9
\end{aligned}
$$

$$
R=\left(N_{\text {direct } \gamma}+N_{b . g .}\right) / N_{b . g .} .
$$

$$
v_{2}^{\text {direct } \gamma}=\frac{R v_{2}^{\text {inclusive } \gamma}-v_{2}^{\text {b.g. }}}{R-1}
$$

This measurements implies that \mathbf{v}_{2} of direct photons is ~ 0

Path cength dependence of energy loss

$\mathrm{Au}+\mathrm{Au} \sqrt{\mathbf{s}_{\mathrm{NN}}}=\mathbf{2 0 0} \mathrm{GeV}$ - Cent 20-60\%

STAR measurement does not show path-length dependence.

PHENIX measurement show path-length dependence.

Path Cength dependence of energy loss

$\pi^{0} \mathbf{v}_{\mathbf{2}}(\mathbf{p t})$ and $\mathbf{R}_{\mathrm{AA}}(\Delta \phi)$ show statistically significant dependence on the path length particularly at $\mathrm{pt}<6 \mathrm{GeV}$

