Supported in part by

Study of J/ ψ production with jet activity in the STAR experiment

Hao Huang

National Cheng Kung University

for the STAR collaboration

Fall Meeting of the Division of Nuclear Physics of the American Physical Society Oct. 29 – Nov. 1, 2020 Now Virtual Meeting!

Outline

- ➢ Motivation
- ≻The STAR detector
- ≻Analysis strategy
- ➤Summary

J/ψ Production Associated with Jets

- > The J/ ψ production mechanism is not fully understood
- >Benefits of studying J/ ψ production with jets
 - Related to fragmentation process
 - Better understanding of J/ψ production

 $> J/\psi$ within a jet studies from RHIC (inclusive) and LHC (prompt):

J/ψ Production vs. Jet Activity

- Quarkonium production from color singlet model (CSM) should result in larger jet activity (number of jets per event) than from color octet mechanism (COM)
 (arXiv:1903.09185 [hep-ph])
- Study of J/ψ production with jet activity is a more straightforward analysis that can be used to distinguish between CSM and COM

(Pietro Faccioli, Particle polarizations in LHC physics, Course on Physics at the LHC 2014)

The STAR Detector

Solution Located at Brookhaven National Laboratory on Long Island, New York Covers full azimuthal angle and mid-rapidity ($|\eta| < 1$)

Analysis Strategy

Aim: J/ ψ cross section as a function of jet activity (number of jets) Data set: p+p collisions at $\sqrt{s} = 200$ GeV in 2015

3. Repeat step 1. and 2. with another $\mu\mu$ pair, obtain another $M_{\mu\mu}$, N_{jet} , Jet p_T , η , ϕ ...

 κ
 μμ pair
 Μ'_{μμ}

 N'_{jet} = 2
 Jet p'_T, η', φ'...

3. Repeat step 1. and 2. with another $\mu\mu$ pair, obtain another $M_{\mu\mu}$, N_{jet} , Jet p_T , η , ϕ ...

 $M'_{\mu\mu} = 2$ $Jet p'_{T}, \eta', \phi'...$

3. Repeat step 1. and 2. with another $\mu\mu$ pair, obtain another $M_{\mu\mu}$, N_{jet} , Jet p_T , η , ϕ ...

Ν'_{jet} = 2 Jet p'_T, η', φ'...

3. Repeat step 1. and 2. with another $\mu\mu$ pair, obtain another $M_{\mu\mu}$, N_{jet} , Jet p_T , η , ϕ ...

 $N'_{jet} = 2$ Jet p'_T, η', φ'...

- 3. Repeat step 1. and 2. with another $\mu\mu$ pair, obtain another $M_{\mu\mu}$, N_{jet} , Jet p_T , η , ϕ ...
- 4. Generate $M_{\mu\mu}$ distributions and fit to obtain the number of J/ ψ

Obtain Jet Information

$> p_T^{jet} \ge 3$ GeV/c to suppress the combinatorial jets

2020/10/31

Hao Huang @ DNP2020

Raw $N_{J/\psi}$ vs. Raw Jet activity

 $> p_T^{jet} \ge 3$ GeV/c to suppress the combinatorial jets

2020/10/31

Hao Huang @ DNP2020

Summary

- Study J/ ψ production with jet activity can help to distinguish between CSM and COM J/ ψ production mechanisms
- ≻Following analysis steps were presented:
 - Reconstruction of charged jets associated with J/ψ production
 - J/ ψ reconstruction via dimuon decay channel
 - Extraction of raw jet p_T , η , ϕ information and raw $N_{J/\psi}$ vs. raw jet activity
- Future Work
- \succ Correct N_{jet} and obtain an unfolded result
- $> J/\psi$ production cross section vs. corrected N_{jet}
- ≻Work on systematic uncertainties
- ➤Compare to theoretical calculations

BACKUP SLIDES

Data Set and Event Selection

- ➤Trigger Selection
 - Dimuon trigger
- ➢ Vertex Selection
 - $|\text{TPC Vz}| \le 100 \text{ cm}$
 - $|\text{TPC Vz} \text{VPD Vz}| \le 6 \text{ cm}$

- Primary Tracks
- NHitsFit ≥ 15
- NHitsdEdx ≥ 10
- NHitsFit/NHitsMax ≥ 0.52
- DCA < 1.5 cm
- Track Kinematic Selection
 - $p_T \ge 0.2 \text{ GeV/c}$
 - $|\eta| \le 1$

J/ψ Reconstruction

Dimuon Decay Channel

≻Muon Candidate

- $p_T \ge 1.3 \text{ GeV/c}$
- $|\eta| < 0.5$
- Matched to MTD hits

➢Muon Identification

- Likelihood Ratio Method
- Variables: $\Delta y \times q / \sigma_{\Delta y \times q}, \Delta z / \sigma_{\Delta z}, \Delta ToF, n\sigma_{\pi} and DCA$

$> J/\psi$ Reconstruction

• Opposite sign pair of muon candidates

Without Muon ID Selection

With Muon ID Selection

Jet Reconstruction

≻FastJet Library

- >Anti- k_T algorithm, R = 0.4 and R = 0.6
- ► Input particles for Jet Finding
 - A dimuon pair
 - Charged tracks from TPC
 - $p_T \ge 0.2 \text{ GeV/c}$
 - $|\eta| \le 1$
 - without muons from each µµ pair
 - Set all $M_{TPC \ track}$ as M_{π}

➢ Jet Selection

- $p_T^{jet} \ge 3 \text{ GeV/c}$
- $|\eta_{jet}| \leq 1$ -R

J/ψ in Different N_{jet} Events

> With both of different R, J/ ψ are concentrated in events with N_{jet} ≤ 2

2020/10/31

Hao Huang @ DNP2020

Put Dimuon Pairs into Jet Reconstruction

- ≻ Most of the two muons from J/ψ candidates ($|M_{\mu\mu} M_{J/\psi}| \le 3\sigma_{J/\psi}$) have a $\Delta R_{\mu\mu}$ larger than the diameter of jets
- >As a result, these muons cause further contributions to N_{iet}
- >Need to reject this effect of muons on my N_{jet}

