Hard Probes 2018: International Conference on Hard & Electromagnetic Probes of High-Energy Nuclear Collisions Aix-Les-Bains

Highlights from STAR

Sooraj Radhakrishnan for the STAR Collaboration Lawrence Berkeley National Laboratory

Hard and EM probes at STAR

Open heavy flavor

- How do charm quarks interact with and lose energy in QGP? How about bottom?
- How do charm quarks in QGP hadronize?
- Does total charm cross-section in HI collisions scale with N_{binary}?

Quarkonium production

• Are more weakly bound quarkonium states more suppressed in HI collisions? Cold nuclear matter effects? Uderstand better charmonium production in p+p collisions.

➡ Jet and di-hadron correlation measurements at RHIC energy

- Features of jet modification in QGP: dependences on jet angular scale, jet radius, constituent p_T, event geometry etc
- Suppression of γ_{dir} triggered jet

Di-lepton production

- Low p_T di-electron excess in peripheral collisions
- Di-muon spectra with improved muon identification

The STAR detector

- HFT significantly improves charm and bottom hadron measurements
- MTD enables muon identification, improve quarkonium measurements

Λ_c production in heavy ion collisions

- Λ_c/D^0 yield ratio provide insight into charm hadronization mechanism in QGP
- HFT provides excellent vertex resolution, allows topological reconstruction of heavy flavor hadrons

- $c\tau$ for $\Lambda_c = 60 \ \mu m!$
- Supervised Learning Methods (BDT) used to improve signal-background separation for $\Lambda_{\!c}$ reconstruction

Λ_c production in heavy ion collisions

- Strong enhancement of Λ_c production compared to PYTHIA calculations
- Suggest coalescence hadronization of charm quarks in QGP at intermediate pT (2-6 GeV/c)

Probing charm quark energy loss: D⁰ R_{AA} and R_{cp}

Measurement of D⁰ spectra extending to zero p_T in HI collisions!

- D⁰ shows similar suppression as light hadrons at high p_T in central collisions
- Transport models with charm quark energy loss can describe the data

Directed flow (v₁) of D⁰

- Sensitive to initial tilt of fireball and viscous drag on charm quarks from QGP [1].
- Also difference between D⁰ and anti-D⁰ v₁ predicted to be sensitive to initial EM field

[1] Chatterjee, Bozek: Phys Rev Lett 120, 192301 (2018)

- Order of magnitude larger v₁ than for light flavor hadrons!
- In agreement with the prediction of large $D^0 v_1$ by hydro models

Talk by L. He: 02/10 Tue, 11.05 (P3)

Charm production in Au+Au collisions

- Cross-section for D⁰ production lower than in p+p
- Au+Au @ 200 GeV STAR Preliminary p⊤ integrated D⁰ cross-section . do^{NN/}dyl (d*u*b) 00 **2014** p+p 2010/11 $\overline{\bigcirc}$ $\overline{}$ $p_{\tau} > 0 \text{ GeV/c}$ (a) 100 0 200 300 N_{part}
- Also measurements on D_s and D^{+/-} production

Charm Hadron		Cross-section (µb)
AuAu 200 GeV (10-40%)	D^0	41 ± 1 ± 5
	D^+	18 ± 1 ± 3
	D_s^+	15 ± 1 ± 5
	Λ_c^+	78 ± 13 ± 28 *
	Total	152 ± 13 ± 29
pp 200 GeV	Total	130 ± 30 ± 26

* derived using Λ_c^+ / D^0 ratio in 10-80%

- Enhancement for Λ_c (and $D_s)$ and suppression for D^0
- But total charm cross-section is found to be consistent with p+p

Bottom production and RAA

- Charm quarks interact strongly with QGP, how about bottom?
- Is there a flavor (mass) dependent energy loss? Is $\Delta E_b < \Delta E_c$?

- Indication of less suppression for $B \rightarrow e$ than $D \rightarrow e$ (~ 2σ difference)
- Results from 2014 data (except B—> J/ψ), 2 5 times more data from 2016 being analyzed

Talk by X. Chen: 02/10 Tue, 09.20 (P3)

Upsilon suppression in 200 GeV Au+Au collisions

Bottomonia a better probe for sequential melting?

- Improved precision by combining 2011 di-electron, 2014+2016 di-muon datasets
- Y(2S+3S) R_{AA} smaller than Y(1S) R_{AA} in central collisions

Talk by Z. Liu: 03/10 Wed, 09.00 (P3)

Sooraj Radhakrishnan

Quarkonia production in p+p and p+Au

 $J/\psi \; R_{pAu}$

- J/ ψ R_{pAu} lower than models with nPDF effects
- NRQCD: includes color octet contributions to J/ψ production, can describe the data

Talk by Z. Liu: 03/10 Wed, 09.00 (P3)

Features of jet modification: Di-jet imbalance

- How jets are modified in the presence of QGP?
- Dijet asymmetry quantifies momentum imbalance between dijets

- p+p events embedded into Au+Au
- Hard-core dijets in Au+Au more imbalanced than in p+p
- A_J consistent with p+p for R=0.4 jets, with soft particles included

Talk by N. Elsey: 02/10 Tue 11:25 (P2)

Do all jets get balanced?

- How does the momentum imbalance evolve with hard constituent p_{T} cut and jet radius?
- Looking at matched jets with different hard constituent p_T cuts

- All jets unbalanced at small jet radius
- Jets with higher hard constituent p_T cuts get balanced as jet radius is increased and soft contribution is included

Jet angular scale dependence

- Cluster all constituents into anti-k_T jets of smaller radii (R = 0.1)
- Choose leading and subleading subjets
- $Z_g = p_T^{SubleadingSJ}/(p_T^{LeadingSJ} + p_T^{SubleadingSJ})$
- $\theta_{SJ} = \Delta R(\text{LeadingSJ axis}, \text{SubLeading SJ axis})$
- Interaction of the jet with medium could depend on the jet's angular scale

Majumder, A and Putschke, J Phys Rev C 93 054909 Mehtar Tani, Y and Tywoniuk, K arXiv:1707.07361

• Look separately at jets with different θ_{SJ}

Jet angular scale dependence

 $\theta_{SJ} = \Delta R(\text{LeadingSJ axis}, \text{SubLeading SJ axis})$

- Hard-core jets unbalanced for all θ_{SJ} selections
- No large difference among different θ_{SJ} selections

Talk by R. Elayavalli: 04/10 Thu, 11.25 (P2)

Jet angular scale dependence

 $\theta_{SJ} = \Delta R(\text{LeadingSJ axis}, \text{SubLeading SJ axis})$

• *Matched jets* (R = 0.4) recover balance (w.r.t p+p) for all θ_{SJ} selections

Talk by R. Elayavalli: 04/10 Thu, 11.25 (P2)

Away side broadening with path length

• Width of away-side jet-like peak for high p_T trigger particles

Path length dependent increase of away-side peak width

Talk by L. Zhang/Y.Li: 02/10 Tue, 16.45 (P2)

Modification of jet-like peak in D⁰-hadron correlations

- Measurement of correlated production of hadrons with D⁰, sensitive to charm energy loss mechanisms
- Widths of Near Side (NS) peak measured from fit to data

- Increase in widths of NS peak in $\Delta\eta$ and $\Delta\phi$ from peripheral to central collisions
- Broadening of jet-like peak, increase by medium interactions

Talk by A. Jentsch: Time

0.1 d/d vd√d

0

-0.05

50-80%

STAR preliminal

 Δn

1.5

Sooraj Radhakrishnan

Direct photon + jet at RHIC

• Charged jets recoiling from γ_{dir} trigger are excellent probes to study energy loss

- First measurement of fully unfolded γ_{dir} + jet spectra at RHIC energy
- Similar suppression for away-side jets associated with γ_{dir} and with π^0 (p+p reference taken from PYTHIA)

Talk by N. Sahoo: 02/10 Tue, 15.00 (P1)

Di-muon spectra in p+p with MTD

- MTD provides precise time resolution (~100 ps) and good spatial resolution for hits, allowing Muon identification
- Muon id. is improved with use of Deep Neural Networks
- Templates for DNN response generated from MC and then fit to data

Low p_T di-electron excess

- Large excess of di-electron yields at very low $p_T (p_T < 0.15 \text{ GeV/c})$ in peripheral collisions
- The average p_T^2 larger than from just photonphoton interactions.
- Could be a probe for the strong EM field trapped in the QGP!

Sooraj Radhakrishnan

2.5

• Au+Au 200 GeV

1.5

 M_{ee} (GeV/c²)

30

0.5

Talk by S. Yang:02/10 Tue, 09.20 (P4)

1

Summary

Strongly interacting charm quarks in QGP

- Similar high $p_T R_{AA}$, (and v_2) for D^0 as light flavor hadrons
- Much larger $D^0 v_1$, compared to light flavor hadrons. Predicted by hydro

Evidence for coalescence hadronization of charm quarks

- Strong enhancement of Λ_c production
- Charm cross section consistent with p+p, but hadrochemistry significantly modified
- Stronger suppression of Y(2S+3S) than Y(1S) in central Au+Au
- ♦ Jets in QGP: Momentum transfer to soft particles. Broadening of

angular distributions of associated particles with path length

- AJ for jets with higher hard const. pT cut get balanced (w.r.t p+p) with increase in jet radius and inclusion of soft constituents
- No strong dependence on jet angular scale seen
- Broadening of away side when going from in-plane trigger to out-of-plane trigger
- Broadening of jet-like peak in D⁰-hadron correlations from peripheral to central

Low p_T di-electron excess - probe for initial photon flux and (potentially) EM field

List of talks from STAR

- Xiaolong Chen, 02/10 Tue, 09.20 (P3): Measurements of open bottom hadron production via displaced J/Psi, D0 and electrons in Au+Au collisions at sqrt(s_NN) = 200 GeV at STAR
- Shuai Yang, 02/10 Tue, 09.20 (P4): Low-pT e+e- pair production in Au+Au collisions at sqrt(s_NN) = 200 GeV and U+U collisions at sqrt(s_NN) = 193 GeV at STAR
- Liang He, 02/10 Tue, 11.05 (P3): Measurement of directed flow of D0 and D0bar mesons in 200 GeV Au+Au collisions at RHIC using the STAR detector
- Nick Elsey, 02/10 Tue 11:25 (P2): Systematic studies of di-jet imbalance measurements at STAR
- Nihar Sahoo, 02/10 Tue, 15.00 (P1): Measurement of the semi-inclusive distribution of jets
 recoiling from direct photon and pi0 triggers in central Au+Au collisions at sqrt(s_NN) = 200 GeV
 with the STAR experiment
- Liang Zhang/Li Yi, 02/10 Tue, 16.45 (P2): Event-plane dependent away-side jet-like correlation shape in 200 GeV Au+Au collisions from STAR
- Zhen Liu, 03/10 Wed, 09.00 (P3): Quarkonium measurements in heavy-ion collisions at sqrt(s_NN) = 200 GeV with the STAR experiment
- Daniel Brandenburg, 03/10 Wed, 11.05 (P4): Measurement of the \mu+\mu Invariant Mass Spectra in p+p and p+Au Collisions at sqrt(s_NN) = 200 GeV with the Muon Telescope Detector at STAR
- Raghav Elayavalli, 04/10 Thu, 11.25 (P2): Measurements of the jet internal structure and its relevance to parton evolution in p+p and Au+Au collisions at STAR
- Guannan Xie, 04/10 Thu, 11.25 (P3): Measurements of Lambda_c^{\pm}, D_s^{\pm}, D*^{\pm} and \$D^{0}(\overline{D^{0}})\$ Production in Au+Au Collisions at sqrt(s_{NN}) = 200 GeV at STAR
- Alex Jentsch, Time: Studies of Heavy-Flavor Jets Using D0-Hadron Correlations in Azimuth and Pseudorapidity in Au+Au Collisions at 200 GeV at the STAR Experiment

