

Evolution of the Baryon Chemical Potential as a Function of Rapidity at $\sqrt{s_{NN}} = 27$ GeV

Matthew Harasty UC Davis For the Star Collaboration APS DNP, Virginia 16 October, 2019

Overview

- Data Selection and Quality
- Particle Identification and Yield Extraction
- Corrections to Spectra
- Midrapidity Comparisons to Literature
- Spectra Fits and Particle Ratios
- Baryon Chemical Potential
- Conclusions

Data and Quality Cuts

×10[°]

Data: Au + Au
$$\sqrt{s_{NN}} = 27 \text{ GeV}$$

Detector: Solenoidal Tracker at RHIC
Collected: 13 May - 11 June 2018

Event and Primary Track Cuts

Top 5% Central Collisions

16 Million Events after Cuts

Matthew Harasty

DNP Crystal City, VA

Particle Identification

Matthew Harasty

DNP Crystal City, VA

16 October, 2019

Matthew Harasty

DNP Crystal City, VA

N/dZ_{TPC}

Pion

- Rapidity and m_{T} - m_{0} binning $m_T^2 = m_0^2 + p_T^2$
- Fit Modified dE/dx

 $Z_{TPC} = \ln\left(\frac{dE/dx_{measured}}{dE/dx_{predicted}}\right) \begin{bmatrix} b \\ b \\ c \\ c \end{bmatrix}$

 Fit Modified Time of Flight $Z_{TOF} = \beta_{measured}^{-1} - \beta_{predicted}^{-1}$

 π^{-} dE/dx **Example Fit** y = [-0.05, 0.05] $m_{\tau} - m_0 = [0.25, 0.275]$

TOF Example Fit y = [-0.05, 0.05] $m_{T} - m_{0} = [1.325, 1.35]$

16 October, 2019

Corrections to Spectra

- TOF Matching Efficiency
- TPC Tracking Efficiency
- Energy Loss in TPC
- Knockout Protons
- Muon Contamination

DNP Crystal City, VA

Pion Spectra and Ratio

$$f_{\rm BE}(m_T - m_0) = A \frac{1}{\exp(m_T/T) - 1}$$

- $N_{\pi^{-}}/N_{\pi^{+}}$ This Work STAR, PRC 44904 \mathbf{y}_{CM}
- Spectra fit over a wide range of rapidities
- **Pion ratio consistent** with published results at mid-rapidity

Matthew Harasty

DNP Crystal City, VA

1

16 October, 2019

Comparison to Published Data

Pion mid-rapidity spectra are consistent with published data

DNP Crystal City, VA

Proton Transverse Mass Spectra

Fit Function: Blast Wave Model [Schnedermann, et al. PRC 48]

$$\frac{d^2N}{m_T dm_T dy} = A \int_0^R r dr m_T \times I_0 \left(\frac{p_T \sinh \rho(r)}{T_{Kin}}\right) K_1 \left(\frac{m_T \cosh \rho(r)}{T_{kin}}\right)$$

T_{kin} : temperature at kinetic freeze-out

Matthew Harasty

DNP Crystal City, VA

at mid-rapidity

with published results

Comparison to Published Data

p at Midrapidity

\bar{p} at Midrapidity

- Proton midrapidity spectra are consistent with published data
- Addition feed-down corrections applied

Matthew Harasty

DNP Crystal City, VA

From Proton Ratios to the Baryon Chemical Potential

$$\frac{N_{\bar{p}}}{N_p} = e^{-\frac{2\left(\mu_B + \mu_Q\right)}{T_{ch}}}$$

$$\mu_B = -\frac{T_{ch}}{2} \ln \frac{N_{\bar{p}}}{N_p} - \mu_Q$$

$$T_{ch} = 159.9 \pm 2.1 \text{ MeV}$$

 $\mu_Q = -12.9 \text{ MeV}$

- Statistical equilibrium model
- T_{ch}: fixed chemical temperature
 - Average of Grand Canonical
 Ensemble and Strange Canonical
 Ensemble Results [STAR, PRC 44904
 (2017)]
- μ_Q : fixed charge chemical potential
 - Model prediction using T_{ch} above
 [Mekjian, Phys Lett B. 651 (1993)]
- Antiproton to proton ratio is Gaussian, so μ_B is quadratic in y

Baryon Chemical Potential

Matthew Harasty

DNP Crystal City, VA

16 October, 2019

- BES-II is collecting high statistics data sets
- Light particle spectra consistent with published data at midrapidity
- Extended range beyond mid-rapidity
- Exhibited rapidity dependence of the baryon chemical potential

[1] STAR, "Bulk Properties of the Medium Produced in Relativistic Heavy-Ion Collisions from the Beam Energy Scan Program" Phys. Rev. C 96 44904 (2017)

[2] Schnedermann, Sollfrank, and Heinz. "Thermal phenomenology of hadrons from 200A GeV S+S collisions". Phys. Rev. C 48 p2462-2475 (1993)

[3] Mekjian, Aram. "Properties of baryonic, electric and strangeness chemical potentials" Phys. Lett. B 651 p33-38 (2007)

Backup Slides

16 October, 2019

Matthew Harasty

Kaon Spectra and Ratio

MatthewsHarasty

DNP Crystal City, VA

16 October, 2019

Mid-Rapidity Comparison to Literature STAR

• Kaon mid-rapidity spectra are consistent with published data

DNP Crystal City, VA

Detailed Event and Track Cuts

Detailed Event and Track Cuts

Event Cuts:

- V_z = [-30cm, 30cm]
- $V_r < 2cm$
- bTOF-matched tracks > 3 Minimum-bias trigger ID RefMult > 295

Track Cuts: NHitsFit ≥ 15 NHitsDeDx ≥ 10 NHitsFit/NHitsMax ≥ 0.52 gDCA < 1.0 cmPhi = $[-\pi, -\pi/2]$ and $[0, \pi]$ bTOF yLocal = [-1.6, 1.6cm]bTOF zLocal = [-2.8, 2.8cm]