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Jet substructure and SoftDrop

@ Study of jet substructure can help understand partonic fragmentation and
hadronization processes

@ Our goal is to access parton showers through experimental observables

@ Grooming technique called SoftDrop used to remove soft wide-angle radiation
from the jet in order to mitigate non-perturbative effects

@ Connects parton shower and angular tree

PT,1, PT,2 - transverse momenta of the subjets

min(pT’h PT,Z) 3 Zeut - threshold (0.1)
—— > 710", B - angular exponent (0)
PT1+ P12 ARy, - distance of subjets
in the rapidity-azimuth plane

where 6 = %

@ lterative SoftDrop used to study first, second, and third splits e
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Substructure observables

Momentum and angular observables

z, | shared momentum fraction | z;, = min(pr1.PT.2)
pritpr2
R, | groomed radius first ARy, that satisfies SoftDrop
condition
kt | splitting scale kT = ZgpTjet SIN Ry
Mass observables
M | jet mass M=|> pi|=+E2—|p]2
i€jet
M | groomed jet mass jet mass after grooming
. _ max(mjvl,mjvg)
1 | groomed mass fraction =30
g
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STAR experiment

TPC - Time Projection Chamber BEMC - Barrel Electromagnetic Calorimeter

@ Detection of charged particles @ Detection of neutral particles for jet
for jet reconstruction reconstruction

o Transverse momenta of tracks: o Granularity (An x A¢) = (0.05 x 0.05)
0.2 < pr <30GeV/c o Tower requirements:

0.2 < ET < 30 GeV

Dataset:

p+p, /5 = 200 GeV, 2012
Algorithms:

anti-kt, Cambridge/Aachen
Jets:

Full jets, 20 < prjer < 50 Gev/c
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Detector effects correction

@ Measurement is affected by finite efficiency and resolution of the
instrumentation

@ Our goal is to deconvolve detector effects and obtain true distribution from
measured one

(2+1)D unfolding (D’Agostini. arXiv:1010.0632(2010)) MultiFold (Andreassen et al. PRL 124, 182001 (2020))

@ 2D unfolding via Iterative Bayesian @ Machine learning method
unfolding @ New tool at RHIC

o Correction on ensemble level o All observables are simultaneously
for the 3¢ dimension unfolded in an unbinned way

Monika Robotkov? Hard Probes 2023 5/28




Correlation between substructure observables
at the first split

Parton Shower ) Zg

Jet Clustering -

R,

;%‘Gi-
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Zz vs. Ry at the first split
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@ When we move from collinear hard splitting to softer wide angle splitting,
zg distribution becomes steeper and more perturbative

@ MC models describe the trend of the data %
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Rg vs. AM/M at the first split
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Collinear Drop
@ Probes the soft component of the jet

@ Difference of an observable with two different SoftDrop settings
of parameters (zeut1, £1) and (zeut,2, B2)

@ Our case: (Zaut1, £1) = (0, 0), (Zewr2, B2) = (0.1, 0)
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Rg vs. AM/M at the first split
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e The AM/M distribution is anti-correlated with R,, which is consistent with
angular ordering of the parton shower

o Large groomed jet radius — little/no soft wide angle radiation (small
AM/M) in the shower

@ MC models describe the trend of the data %
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zg vs. AM/M at the first split
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@ The more mass that is groomed ol
away relative to the ungroomed

mass, the flatter and more %
non-perturbative the z,

distribution is
@ The first splitting that passes SoftDrop can be non-perturbative —

application of the AM = 0 selection can filter out the jets with large
non-perturbative contribution

A 0.2 0.3 0.4 0.5
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[ vs. Rg at the first split

max(mj,1,m;2)

p= T
uw—0 p—1
1 allows us to study mass sharing of the hard splitting %
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1 vs. Rg at the first split for two different prje¢ bins

=
5
[ STAR Preliminary 1 r
=5 F I _ L
S p+p ¥5=200Gev E PYTHIA 6 (STAR) ¥ 20<p, , <30 Gevic
Z “F antik,+CIAR=04 ¥ - PYTHIA 8 (Monash) E
% 3i50f1Drop z,,=01B=0 kS I E
E w0<Ry<0.15,., F ¢ 0.15<R;<0.30 E A 0.30<R;<0.40
2F + = + 7
g + e E
[ I, r
=4
k<] ak I I 30< pmel <50 GeV/c E
P
°
Z 3 T b
= A 0.30<R;<0.40
2 I .
1 I 3
L

0.8

u

@ Dependence on Ry much weaker than AM /M, largely independent
of prjer, MC models agree with data

@ 1 shifts to smaller values at smaller angles, indicating a faster reduction

of virtuality in the jet shower
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log(kt) vs. Ry at the first split

Dreyer, Salam, Soyez, JHEP 12 (2018) 064
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kT = ZgpTjet SIN Ry

In(1/8)
Cutting on Rz moves us to different kt — we are probing different parts of the

Lund Plane
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log(kt) vs. Ry at the first split for two different prje: bins
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o log(kt) has a strong dependence on R, and weak dependence on pr jet,
MC models describe the trend of the data

@ 0 value corresponds to 1 GeV — we move from non-perturbative to %
perturbative region e
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Evolution of the splitting observables as
along the jet shower

we travel

Parton Shower
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z; and R, distributions at 15t 2nd and 3 splits
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Summary

Correlation at the first split
@ New methods for the unfolding were applied (MultiFold, (2+1)D unfolding)

e z,, AM/M, log(kr) have a weak dependence on prjet and a strong
dependence on R,

@ Study of different Lund Plane regions allows us to observe the correlations
between jet substructure observables

Splits along the shower

@ Observed significantly harder/symmetric splitting at the third/narrow split
compared to the first and second splits

Selecting on the split number along the jet clustering tree results in similar
change in z distributions as selecting on R; or AM/M at the first split

Jet substructure measurements at RHIC energies allow to disentangle
perturbative (early, wide splits) and mostly non-perturbative dynamics
(late, narrow splits) within jet showers, and test validity of MC models %
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Thank you for your attention!
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Back up
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Jet clustering algorithms

@ Jets are defined using algorithms

Anti-kt algorithm

f 2 2 2
o d; = mm(l/pTi;;'/PTj)ARij' dig = 1/pT_,

o Clustering starts from the particles
with the highest transverse
momentum

Cambridge/Aachen (C/A) algorithm

o dj = AR; 2/R?, dg =1

o Particles are clustered exclusively

based on angular separation, ideal to
be used to resolve jet sub-structure

d;g - distance of the particle i from the beam
pT - transverse momentum

ARj; - distance between the particle / and j Cacciari, Salam, Soyez,
R - jet resolution parameter JHEP 0804:063 (2008)
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SoftDrop

@ Grooming technique used to remove
soft wide-angle radiation from the
jet

@ Connects parton shower and angular
tree

@ Jets are first found using the
anti-kt algorithm

Recluster jet constituents using
the C/A algorithm

Jet j is broken into two sub-jets j
and j> by undoing the last stage
of C/A clustering

Jet j is final SoftDrop jet, if
sub-jets pass the condition on the
right, otherwise the process is
repeated

(2]
o

Monika Robof

Larkoski, Marzani, Thaler, Tripathee, Xue,
Phys. Rev. Lett. 119, 132003 (2017)

@ Shared momentum fraction z,

_ min(pr.1,p1.2)

Zg = pT1 + P2 > Zcutgﬁv

where 0 = %
o Groomed radius R, - first ARy,
that satisfies SoftDrop condition

PT,1, PT,2 - transverse momenta of the subjets
Zeut - threshold (0.1)
B - angular exponent (0)

AR5 - distance of subjets in the

rapidity-azimuth plane
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Lund Plane measurement

T
Data ATLAS
PvTH1A8.230 Vs=13TeV, 139 fb™
Pownrea+Py1Hin8.230 p_ >675GeV
Serpa2.2.5 (AHADIC) O_Té‘7 <In(RIAR) < 1.00
SHerra2.2.5 (String)
Herwic7.1.3 (Ang. ord.)

@ Previous ATLAS
measurement uses Lund jet

plane %+ Heawc?.1.3 (Dipole) ' :E
T . . E AR RN N
E # =
° Slgn.lflcant dlfﬂ.eren.ces in Srngannsttt’ s
varying hadronization 145 T
. 2 12E NRAR LAY
models at hlgh PT jet at the ESO.BI% ] ; é TR i =
LHC — we want to study 085 1%, | | ; =
. [— Total Syst. MC Modeling - - Experimental ]
thls at |OWer pT,jetr Where 20'5 - P.leyUpy - Unfolding * smpf 1
non-perturbative effects are % o= :
o O
expected to be larger =5 b . . \ . ]
1 2 3 4 5
@ While Lund jet plane , in(/2)
107 102

integrates over all splits, we
focus on the first split

Z = pemissin / (pemisson 4 o)

ATLAS, Phys. Rev. Lett. 124, 222002 (2020)
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Data analysis

@ p+ p collisions at /s = 200 GeV, 2012
@ ~11 million events analyzed
Event and track selection
@ Transverse momenta of tracks: 0.2 < pr < 30 GeV/c
@ Tower requirements: 0.2 < Er < 30 GeV

Jet reconstruction

Jets reconstructed with anti-kt algorithm, reclustered with the C/A algorithm

°
@ Transverse momenta of jets: 15 < prjer < 40 GeV/c
@ Resolution parameters: R =0.4, R=0.6

°

SoftDrop parameters: z,,; = 0.1, 8 = 0

min(pT,1, PT,2) (AR12)[3
————— > Zcut
prT.1+pPT2 R
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2D Bayesian Unfolding

2D iterative Bayesian method implemented in the RooUnfold
@ Procedure has following steps:

@ The jets at the detector and particle level are reconstructed separately

@ Jets are matched based on AR < 0.6

@ Jets without match - missed jet (particle level) and fake jets (detector level)

© Response between detector level and particle level for observables is
constructed

@ We use RooUnfold response which contains Matches and Fakes

o Unfolding is done separately for pd intervals 15-20, 20-25, 25-30,
30-40 GeV/c

Then unfolded spectra are weighted with values from our projection and put
together

Together with trigger missed and unmatched weighted spectra we get our
fully unfolded spectrum I:‘.,?
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Correction in 2+1D for z;, Rs, and pr jet

pip Vs = 200 GeV | STAR Simulation
PYTHIA 6 + GEANT 3

@ Results are in 3D — z; vs. Ry is
unfolded in 2D and correction for
PTjet in 1D is needed

doldp_ [mb/(GeV/c)Y

o For each particle-level prje: bin,
we do projection of this bin into
detector-level pr e, and get the
weights from detector-level pr jet

bins “’E

STAR, Phys. Lett. B 811 (2020) 135846
@ We unfold z; vs. Ry via iterative Bayesian unfolding in 2D using RooUnfold
and unfolded spectra for each detector-level pr et bin are weighted and
summed

antik; R =0.4 Jet:
m*+R < 1.0
PTEPRNRN I P
10 20

et
X <Pl > LRMS
P N B B
40 50 60 70

part
pTJel GeVic

@ Additional corrections for trigger and jet finding efficiencies are applied

Details on systematic uncertainties available in back up
~ Monika Robotkova | Hard Probes 2023 25/28



Correction in 2+1D for pr jet/initiator: Zg: Rg

@ Splits can be affected by detector efficiency and resolution
@ Observables at a given split are smeared

@ Splitting hierarchy is modified going from particle level to detector level

2
Particle 1
Level

.,
Fake split .
Detector ~ 1 1 3 Detector
Level ” Missed split 2 Level
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MultiFold

Detector-level Detector-level E.g., Iteration 1, step 1:
3 Weights: —
- %i Data ghts: w(x) = po(x)/p1(x)  OkforiD
L Po(x) —_ Andreassen and Nachman
z é "‘f(z)/(l - f(s':)) PRD 101, 091901 (2020)
where f(x) is a neural network and trained with the binary cross-

Step X entropy loss function

e x4 Simulation: o
) - 2| PYTHIA+GEANT to dl'stlngulsh jets
£ Simulation = coming from data vs
E ;:: = from simulation

1

Where does the machine
learning part come in?

Monika R

Unfolding - Reweighting histograms
- Classification = Neural network

See backup slides for details of the neural networks.
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Systematic uncertainties

@ Systematic uncertainties estimated by varying the detector response
Hadronic correction - fraction of track momentum subtracted is varied
Tower scale variation - tower gain is varied by 3.8%

Tracking efficiency - efficiency is varied by 4%

Unfolding - iterative parameter is varied from 4 to 6

@ Systematics due to prior shape variation will be included in the final

publication

2> - n

c anti-k; + C/A,R=0.4 STAR Preliminary == TowerScale var 3.8%]
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