

Open heavy flavor production at STAR

Daniel Kikoła for the STAR collaboration

Warsaw University of Technology

EUROPEAN UNION EUROPEAN REGIONAL DEVELOPMENT FUND

Top RHIC energy: QGP properties

 \rightarrow Energy loss, degree of thermalization (charm flow)

Heavy flavor production vs energy

 \rightarrow Study of QCD phase diagram

 \rightarrow Is nuclear medium similar/different at 200 GeV and 62 and 39 GeV?

Open heavy flavor at STAR

Courtesy of David Tlusty

Electrons from semi-leptonic heavy flavor hadron decays (Non-photonic electrons)

- high p_{T} reach

- indirect access to the parent hadron kinematics

Direct open charm reconstruction

- direct access to the heavy meson kinematics

- large background without vertex detector

- difficult to trigger

The STAR detector

<u>VPD</u>: minimum bias trigger.

<u>**TPC</u>**: PID via dE/dx, tracking</u>

TOF: PID.

<u>BEMC</u>: PID via E/p, fast online trigger

Particle Identification at STAR

Electron Identification

Heavy flavor in p+p and A+A 200 GeV

New low p_T (0-0.7 GeV/c) measurement constrains the total charm cross-section. Results consistent with FONLL upper limit. Run 9: Phys. Rev. D 86 (2012) 72013 Run 12: STAR Preliminary (FONLL: Fixed Order plus Next-to-Leading Logarithms calculation, $\mu_F =$ $\mu_R = m_c$, |y| < 1, *R. Nelson, R. Vogt, A. D. Frawley, arXiv: 1210.4610*)

7

D⁰, D* p_{τ} spectra in p+p and Au+Au 200 GeV

Run 9: Phys. Rev. D 86 (2012) 72013 Run 12: STAR Preliminary arXiv:1404.6185, submitted to PRL

Charm cross section at 200 GeV

Charm cross section follows N_{bin} scaling

→ Charm quarks produced mostly in initial hard scatterings

STAR d+Au: J. Adams, et al., PRL 94 (2005) 62301
STAR p+p Run 9: Phys. Rev. D 86 (2012) 72013
FONLL: M. Cacciari, PRL 95 (2005) 122001.
NLO: R. Vogt, Eur.Phys.J.ST 155 (2008) 213

Enhancement at intermediate p_r

Au+Au vs U+U collisions

U+U: 20% increase of energy density

Suppression at high p_{τ} in central and mid-central collisions.

Enhancement at intermediate p_{τ}

High p_{τ} suppression at RHIC

Similar trend vs system size as for pions

D⁰ suppression suggests strong charm-medium interaction

$D^0 R_{AA}$ in Au+Au 200 GeV vs models

Models with strong charmmedium interaction and fragmentation+coalescence hadronization reproduce suppression at high p_T and enhancement at intermediate p_T .

Torino model with hadronization through fragmentation only doesn't reproduce the "bump".

LANL energy loss model with mesons dissociation also reproduce the observed suppression.

Do CNM effects contribute to observed enhancement ?

Non-photonic electrons in Au+Au 200 GeV

Strong suppression at high p_{τ} in central collisions

D^o and NPE suppression are similar

NPE $v_{_2}$ and $R_{_{AA}}$ in Au+Au 200 GeV

- Data disfavor radiative energy loss as the only energy loss mechanism
- Finite v_2 at low and intermediate p_T
- Increase of v_2 at high p_T likely due to jet-like correlation

NPE $v_{_2}$ and $R_{_{AA}}$ in Au+Au 200 GeV

- Data disfavor radiative energy loss as the only energy loss mechanism
- Finite v_2 at low and intermediate p_T
- Increase of v_2 at high p_T likely due to jet-like correlation
- Difficult to describe suppression and v_2 simultaneously

Bottom suppression

Data still limited in precision to draw solid conclusion

NPE – hadron correlations in Au+Au 200 GeV

Proxy for heavy flavor jets azimuthal correlations

Additional means to constrain models

J. Dunkelberger, QM 2014

flow background: $1 + 2v_2^h v_2^e \cos(2\Delta\phi)$

NPE – hadron correlations in Au+Au 200 GeV

Similar trend to di-hadron correlations:

 \rightarrow larger away side broadening and suppression in central events

NPE – hadron correlations in Au+Au 200 GeV

Similar trend to di-hadron correlations:

 \rightarrow larger away side broadening and suppression in central events and at lower trigger p_{τ}

Heavy flavor production vs energy

Jet quenching at RHIC

Light hadrons suppressed at high p_{τ} at 39 - 200 GeV

Elliptic flow at RHIC

Light hadrons suppressed at high p_{T} at 39 - 200 GeV

Positive v_2 of charged hadrons, small difference for 39 - 200 GeV

NPE spectra in Au+Au at $\sqrt{s_{NN}}$ = 62 GeV

No NPE suppression compared to pQCD calculations for $p_{\tau} < 5.5$ GeV

 J/ψ contribution not subtracted

ISR: II Nuovo Cimento (1981), 65A, N 421-456 FONLL: R. Vogt, private communicati

NPE R_{AA} : 62 GeV vs 200 GeV

62 GeV: No suppression compared to pQCD calculations for $p_{\tau} < 5.5$ GeV

200 GeV: strong suppression for $p_{\tau} > 4$ GeV/c

Cold nuclear matter effects unknown, could be different at 62 and 200 GeV

NPE R_{AA} and v_2 at $\sqrt{s_{NN}} = 62 \text{ GeV}$

No NPE suppression compared to pQCD calculations for $p_{T} < 5.5$ GeV

NPE v_2 significantly **lower** at 39 and 62 GeV than at 200 GeV for $p_{\tau} < 1$ GeV/c

NPE R_{AA} and v_2 at $\sqrt{s_{NN}} = 62 \text{ GeV}$

No NPE suppression compared to pQCD calculations for $p_{T} < 5.5$ GeV

NPE v_2 significantly **lower** at 39 and 62 GeV than at 200 GeV for $p_{\tau} < 1$ GeV/c

NPE v_2 at $\sqrt{s_{NN}}$ = 62 and 200 GeV

Model: PRC 82 (2010) 035201, PRL 110 (2013), 112301

He et al: difference between 200 and 62.4 GeV from modification of input heavy flavor spectrum and different v_2 of light quarks

J/ψ suppression at 39 and 62.4 GeV

Model: Zhao, Rapp Phys Rev C.82.064905

Significant suppression at 39 and 62 GeV, similar as at 200 GeV

39 and 62 GeV p+p reference: Color Evaporation Model (CEM)

QCD medium at RHIC:

Au+Au 200 GeV

- Hot (J/ ψ , Upsilon suppressed)
- Dense (D⁰, NPE quenching)

Au+Au 62.4 GeV

- Hot (J/ ψ suppressed)
- Not so dense (?)
- \rightarrow light hadrons: jet quenching, v₂ > 0
- \rightarrow NPE v_2 consistent with 0
- \rightarrow **no NPE suppression** at p_T < 5.5 GeV

Heavy Flavor Tracker

Muon Telescope Detector

J/ψ event in p+p 500 GeV

Full HFT assembly (PIXEL, IST and SSD) and MTD available in 2014 RHIC run (a long Au-Au 200 GeV run)

Summary

- Strong heavy flavor (D^o, NPE) suppression at 200 GeV
- D⁰ production enhanced at intermediate p_τ
- NPE not suppressed compared to pQCD calculations for $p_{\tau} < 5.5$ GeV at 62 GeV
- NPE v₂ consistent with zero in Au+Au 39 and 62.4 GeV
- NPE v₂ at lower energies significantly lower than at 200 GeV for p_τ < 1 GeV/c

Backup

NPE elliptic flow

• v_2 {2} and v_2 {4} – upper and lower limit on elliptic flow:

 $v_{2} \{2\}^{2} = \langle v \rangle^{2} + \sigma^{2} + \delta$ $v_{2} \{4\}^{2} \approx \langle v \rangle^{2} - \sigma^{2}$

Phys.Lett. B659, 537 (2008)

- Positive v_2 at low and intermediate p_T
- Increase of v_2 at high p_T likely due to jet-like correlation and/or path length dependence

Charm v_2 and R_{AA} – projections for 2014

Assuming $D^0 v_2$ distribution from quark coalescence.

Precision charm v_2 and R_{AA} measurements:

- \rightarrow energy loss mechanism
- \rightarrow charm interaction with the QCD matter
- \rightarrow medium thermalization degree
- \rightarrow transport coefficients

Beauty v_2 and R_{AA} – projections for 2014

Charm cross section at 200 GeV

STAR d+Au: J. Adams, et al., PRL 94 (2005) 62301
FONLL: M. Cacciari, PRL 95 (2005) 122001.
NLO: R. Vogt, Eur.Phys.J.ST 155 (2008) 213
PHENIX e: A. Adare, et al., PRL 97 (2006) 252002.

Charm cross section at mid-rapidity:

 $\frac{d\sigma}{dy}\Big|_{y=0}^{pp} = 170 \pm 45^{+38}_{-59} \mu b \quad \frac{d\sigma}{dy}\Big|_{y=0}^{AuAu} = 175 \pm 13 \pm 23 \mu b$

Total charm cross section: $\sigma_{c\bar{c}}^{pp} = 797 \pm 210^{+208}_{-295} \mu b \quad \sigma_{c\bar{c}}^{AuAu} = 822 \pm 62 \pm 192 \mu b$

Charm cross section follows number of binary collisions scaling

 \rightarrow Charm quarks produced mostly via initial hard scatterings

Charm R_{AA} in Au+Au 200 GeV

arXiv:1404.6185, submitted to PRL

	TAMU	SUBATECH	Torino	Duke	LANL
HQ prod.	LO	FNOLL	NLO	LO	LO
QGP-Hydro	ideal	ideal	viscous	viscous	ideal
HQ eLoss	coll.	coll. +rad.	coll. +rad.	coll. +rad.	diss. +rad.
Coalescence	Yes	Yes	No	Yes	No
Cronin effect	Yes	Yes	No	No	Yes
Shadowing	No	No	Yes	Yes/No	Yes

- Large suppression at high p_T points to strong charm-medium interaction;
- Indication of enhancement p_T~0.7-2GeV/c, described by models with charm quarks coalescence with light quarks;
- CNM effects could be important

Quark Matter 2014, Zhenyu Ye

NPE in p+p 62.4 GeV

ISR: IL NUOVO CIMENTO (1981), 65A, N4, 421-456 FONLL: R. Vogt, private communication k_{τ} -factorization: Phys. Rev. D 79, 034009 (2009) and private communication with R. Maciula

 k_{T} -factorization: Phys. Rev. D 79, 034009 (2009) and private communication with R. Maciula

No NPE suppression compared to ISR p+p data and pQCD calculations

No NPE suppression compared to ISR p+p data and pQCD calculations

Non-photonic electron R_{AA} in Au+Au 200 GeV

- Strong suppression at high p_{τ} in central collisions
- D⁰ and NPE suppression are similar
- Uncertainty dominated by p+p baseline

D⁰ elliptic flow

