



# 12<sup>th</sup> International Workshop on High- $p_T$ Physics in the RHIC/LHC era

2-5 October 2017, University of Bergen, Norway

## Recent quarkonium results from STAR

#### Wangmei Zha for the STAR Collaboration University of Science and Technology of China



#### The promise

#### Evidence of deconfinement:

- The heavy quark-antiquark potential is screened by the deconfined quarks and gluons in medium  $\rightarrow$  dissociation
  - J/ $\psi$  suppression was proposed as a smoking gun of QGP formation.
  - T. Matsui and H. Satz, PLB178 (1986) 416



A. Mocsy, EPJC61 (2009) 705

sequential melting

## Not so easy





100

PHENIX: PRC84 (2011) 054912

200

part

NA50. EPJC39:335-345.2005

40

30

20

Abnormal

suppression!

400

300

#### Even more complicated



| J/ψ feed-down |                                 |  |
|---------------|---------------------------------|--|
| $\chi_{c}$    | 10-30% (vs. p <sub>T</sub> )    |  |
| ψ(2S)         | ~ 8%                            |  |
| B-hadron      | 0-50% (vs. $p_T$ , $\sqrt{s}$ ) |  |

| Υ(1S) feed-down     |                              |  |  |  |
|---------------------|------------------------------|--|--|--|
| χ <sub>b</sub> (1P) | 10-30% (vs. p <sub>T</sub> ) |  |  |  |
| $\chi_b(2P+3P)$     | ~ 5%+1%                      |  |  |  |
| Υ(2S+3S)            | 8-13%+1%                     |  |  |  |

#### **STAR detector**

#### Large acceptance: $|\eta| < 1, 0 < \phi < 2\pi$



- Time Projection Chamber (TPC) Charged particle momentum measurement and identification using dE/dx
- Time of Flight detector (TOF)
   Particle identification using 1/β
- Barrel ElectroMagnetic Calorimeter (BEMC) Electron identification using E/p ~ 1, triggering
- Muon Telescope Detector (MTD) Muon identification, triggering |η|<0.5, φ ~ 45%</li>

## Inclusive J/ $\psi$ production in p+p collisions



- Dimuon channel extends reach to low p<sub>T</sub>
   CGC+NRQCD and NLO NRQCD predictions agree with data.
- ✓ Follow  $x_T$  scaling at  $p_T > 4$  GeV/c with n=5.6.

#### $J/\psi$ yield versus event activity





- Stronger-than-linear growth for relative  $J/\psi$  yield.
- Different trends for low and high  $p_T J/\psi$ .
- Similar trends at LHC and RHIC.

#### Compare with models

Percolation model: PRC86, 034903 (2012)



- PYTHIA8 describes the rising trend and p<sub>T</sub> dependence in data.
- Percolation model also qualitatively reproduces the trend in data.
- Measurement for higher multiplicity bins and correction for detector response via unfolding are in progress -> important to distinguish between models.

#### Inclusive J/ $\psi$ modification in p+Au



- R<sub>pAu</sub> vs. R<sub>dAu</sub>: Consistent within uncertainties, with a small tension at 3.5 < p<sub>T</sub> < 5 GeV/c (~ 1.4σ).</li>
- Data vs. model: Data seem to favor the model calculation with additional nuclear absorption on top of nuclear PDF effects!

#### $\psi(2S)/J/\psi$ ratio and double ratio



- Measured  $\psi(2S)/J/\psi$  ratio in p+p 200 GeV is consistent with world-wide data.
- First ψ(2S) to J/ψ double ratio measurement between pp and pAu at midrapdity at RHIC:

 $1.37 \pm 0.42$ (stat.)  $\pm 0.19$ (syst.).

#### Energy dependence of R<sub>AA</sub>



- Significant suppression of  $J/\psi$  production in Au+Au collisions observed at  $\sqrt{s_{NN}} = 39 200$  GeV.
- No significant energy dependence observed for R<sub>AA</sub> from 17.2 200 GeV.

## $J/\psi$ modification in A+A collisions at low $p_T$



- At RHIC, R<sub>AA</sub> decreases considerably towards central collisions.
- At the LHC, R<sub>AA</sub> is more or less flat.
- For central collisions,  $R_{AA}(200 \text{ GeV}) < R_{AA}(2.76 \text{ TeV}) \sim R_{AA}(5.02 \text{ TeV})$ 
  - ✓ RHIC: Dissociation overweighs regeneration
  - ✓ LHC: Regeneration dominates

#### $J/\psi$ modification in A+A collisions at high $p_T$



• Decreasing R<sub>AA</sub> towards central collisions at all collision energies.

- For all centralities,  $R_{AA}(200 \text{ GeV}) > R_{AA}(2.76 \text{ TeV}) \sim R_{AA}(5.02 \text{ TeV})$ 
  - Dissociation in effect

## $J/\psi \ v_2$ in U+U collisions



Au+Au results: Run 2010 and 2011 combined

- The first measurement of  $J/\psi v_2$  in U+U collisions.
  - ✓ U+U and Au+Au results are consistent within uncertainties.
- J/ψ v<sub>2</sub> is consistent with zero above 2 Gev/c within uncertainties.

#### $\Upsilon$ results in p+p and p+Au collisions



#### $\Upsilon$ signal in A+A collisions



- Background sources:
  - ✓ Combinatorial background (estimated with  $N_{l_+l_+} + N_{l_-l_-}$ )
  - ✓  $b\overline{b}$  and Drell-Yan contributions

#### Y measurements versus centrality



- Indication of more suppression with increasing centrality.
- $\Upsilon(2S+3S)$  is more suppressed than  $\Upsilon(1S)$  in central collisions!
  - Sequential melting
- Comparison with LHC results:
  - ✓ Y(1S) : Consistent with CMS measurement!
  - $\checkmark$   $\Upsilon$ (2S+3S) : Indication of less suppression at RHIC than at LHC.

#### $\Upsilon$ measurements versus $p_T$



CMS, PLB770 (2017) 357-379

- $\Upsilon(1S)$ : No obvious dependence on  $p_T$  consistent with CMS result.
- $\Upsilon$ (2S+3S): Indication of less suppression at RHIC at high p<sub>T</sub>

#### Comparison with models





#### "Dissociation + Regeneration" picture

#### $J/\psi$ as an example!



The interplay of CNM, color screening, and regeneration effects can describe the energy dependence of nuclear modification factor reasonably well!

|                  | Dissociation | Regeneration | CNM          |
|------------------|--------------|--------------|--------------|
| $\sqrt{s}$ 1     | 1            | 1            | 1            |
| р <sub>т</sub> 🕇 | ↓ (?)        | $\downarrow$ | $\downarrow$ |
| у 🕇              | $\downarrow$ | $\downarrow$ | 1            |



- Significant enhancement of J/ψ yield observed in p<sub>T</sub> interval 0 – 0.3 GeV/c for peripheral collisions (50 – 90%).
- Can not be described by hadronic production modified by the hot medium or cold nuclear matter effects!
- Origin from coherent photonnucleus interactions?

#### Introduction to photon interactions in A+A



**Electromagnetic interaction** 

interactions

interactions

- This large flux of quasi-real photons makes a hadron collider also a photon collider!
- Photon-nucleus interactions:
  - $\checkmark$  Coherent: emitted photon interacts with the entire target nucleus.
  - ✓ Incoherent: emitted photon interacts with nucleon or parton individually.

#### Features of coherent photon-nucleus interaction

#### • Coherently:

- ✓ Both nuclei remain intact
- ✓ Photon/Pomeron wavelength  $\lambda = \frac{h}{n} > R_A$
- ✓  $p_T < h/R_A$  ~30 MeV/c for heavy ions
- ✓ Strong couplings ( $Z\alpha_{EM} \sim 0.6$ ) → large cross sections

#### Interference:

- Two indistinguishable processes (photon from A<sub>1</sub> or A<sub>2</sub>)
- ✓ Vector meson → opposite signs in amplitude
- ✓ Significant destructive interference for p<sub>T</sub> << 1/<b>



S. R. Klein and J. Nystrand, PRL84 2330 (2000)

## $J/\psi$ production and modification at very low $p_T$



 Significant enhancement of J/ψ yield observed at p<sub>T</sub> interval 0 – 0.2 GeV/c for peripheral collisions (40 – 80 %)!

No significant difference between Au+Au and U+U collisions.

#### The excess yield and dN/dt distribution



- Low  $p_T J/\psi$  from hadronic production is expected to increase dramatically with N<sub>part</sub>.
- No significant centrality dependence of the excess yield!



Similar structure to that in UPC case!

#### • Hint of interference!

✓ Interference shape from calculation for UPC case
 S. R. Klein and J. Nystrand, PRL84 2330 (2000)

#### Similar slope parameter!

- ✓ Slope from STARLIGHT prediction in UPC case - 196 (GeV/c)<sup>-2</sup>
- ✓ Slope w/o the first point:  $199 \pm 31 (\text{GeV/c})^{-2} \chi^2 / NDF = 1.7/2$
- ✓ Slope w/ the first point:  $164 \pm 24(\text{GeV/c})^{-2}$  $\chi^2/NDF = 5.9/3$

## Modeling coherent J/ $\psi$ production in A+A collisions

• How does the coherent process stay coherent in violent hadronic collisions?

W. Zha etal., arXiv: 1705.01460 Photon emitter and target



#### Calculations with different scenarios



W. Zha etal., arXiv: 1705.01460

- Different scenarios have different trends toward central collisions!
- Nucleus+Nucleus: over estimate the data in semi-central collisions.
- Spectator+Spectator: under-predicts the data in semi-central collisions.
- To distinguish the different scenarios, measurements at central collisions are needed!
- Cold Nuclear and hot medium effects are not included in the calculation.

#### t distribution from model



 Both calculations (with and without interference) describe the data reasonably well!

✓ All four scenarios give similar shape, only show results for "Nucleus+Nucleus".

## Summary

• Quarkonium modification in heavy-ion collisions.

|                  | Dissociation | Regeneration | CNM          |
|------------------|--------------|--------------|--------------|
| $\sqrt{s}$ 1     | 1            | 1            | 1            |
| р <sub>⊤</sub> ↑ | ↓(?)         | $\downarrow$ | $\downarrow$ |
| у ↑              | $\downarrow$ | $\downarrow$ | 1            |



• Excess of  $J/\psi$  at very low  $p_T!$ 

✓ Consistent with coherent photoproduction!

✓ A novel probe to test the medium?

