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track curvatures between TPC sectors; they are opposite for blue, yellow beam measurements & are 

symmetric with respect to the S-axis 
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“patches” above a threshold as a 
cluster for soft fragmentation (total 
coverage ΔΦ = Δη = 1) 

Jet reconstruction

High Tower trigger:
Uses a single ADC channel as a jet 
“seed” and totals energy in 
surrounding trigger “patch”

full azimuthal (Φ) coverage 

pTJet
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Asymmetry can be 
measured in terms of 

either z or jT

azimuthal angles calculated:



• Present a survey of quark transversity (δq) and 
partonic spin degrees of freedom (Motivation) 

• Conduct a relevant overview of the 
experimental apparatus (STAR) and Jet 
Reconstruction

• Relate of δq to the experimentally measurable 
Collins asymmetry

• Demonstrate kinematic coverage of the data 
and physics in terms of pT

• Show statistical expectations of measured 
asymmetries and summarize systematic 
concerns

Goals of this Presentation:
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sin(ΦS – Φπ) spectrum
 Red = ↑ , Black = ↓ (lab frame pol.)

(Use of opposing polarizations, weighted by beam luminosity, 
ensures that detector acceptances cancel in the asymmetry.)
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Asymmetry Statistics 

“blue” beam polarized

“yellow” beam polarized

(jets in forward 
hemisphere of each 
beam analyzed)

Asymmetry should 
be opposite in sign 

for + vs. – pions



Asymmetry Statistics 

Published e+e– results 
from Belle



• TRIGGER BIAS ⇒ accurate determination of 

leading pions; natural 〈z〉distribution (need 

PYTHIA simulation)

• π0 (and K0) contribution to leading particles

• K± contamination

• Track efficiency

• Accuracy of both jet and π kinematics

• Polarization direction and magnitude

• Relative luminosity error

Upcoming: Systematic 
Errors
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Conclusion and Status of 
Research

 The Collins mechanism yields sensitivity to transvesity in 
polarized p↑p jet production.

Analysis of 2006 transverse data at mid-rapidity 
is well under way.

The aforementioned systematic effects are now 
being studied.
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Extra Reference Slides



...after acceptances cancel when 
↑ and ↓ polarizations are added

red = up pol., black = 
down pol., blue = added
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Effect on z due to triggering on neutral particles


