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TPC: charged particle tracking;
dE/dx PID (p<15 GeV)

BEMC, EEMC: barrel/endcap calorimeters
for triggering, jet reconstruction
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Data analyzed separately for blue and beams in
forward hemisphere only:
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* Asymmetric distributions shown here are NOT a result of the Collins Asymmetry, they are a relic of
track curvatures between TPC sectors; they are opposite for blue, yellow beam measurements & are
symmetric with respect to the S-axis
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reconstruction
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Only Leading pions (highest
momentum fraction z) are
kept
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Jet reconstruction

Jet High :
Patch Tower p. . In the x-y plane
Results from e e N 2 e o l
several triggers 0 et L 1
compared 20 = - N
BEMC < ‘ :"'..I-.. _510
é .
: §> 10?
Jet Patch trigger: S0 SR s
Requires sum of 400 localized 200 iR e
“patches” above a threshold as a B b o T
cluster for soft fragmentation (total PRI i 1
40 -30 -20 -10 O 10 20 30 40

coverage A®Q =An =1) Jet p, (GeV)

High Tower trigger:

Uses a single ADC channel as a jet
“seed” and totals energy in
surrounding trigger “patch”

full azimuthal (®) coverage
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Data separated by z and jr; azimuthal angles calculated:
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Goals of this Presentation:

® Show statistical expectations of measured
asymmetries and summarize systematic
concerns
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sin(®Ps - ¢n) spectrum

Red = T Black = | (lab frame pol)
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(Use of opposing polarizations, weighted by beam luminosity,
ensures that detector acceptances cancel in the asymmetry.)
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TRIGGER BIAS = accurate determination of

leading pions; natural {z) distribution (need
PYTHIA simulation)

T1° (and K°) contribution to leading particles
K* contamination

Track efficiency

Accuracy of both jet and TT kinematics
Polarization direction and magnitude

Relative luminosity error
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Quantifying the Asymmetry
2 = (sin(®s—Dr)ACTTY)

(oY) |
How do we get the cross-sections from

particle counts in the detector?
We sum over both 1 and | polarizations™

and exploit symmetry | |
FOr O < CDS _ (Dh < |800: *weighted by relative

luminosities
Azimuthal symmetry requires that
N*T =N-{ + AN
N*{ =N-T + AN
Weighting and summing over opposite detector sides yields
A __ N*T[sin(®s— ®n)] + N-L[sin(Ps— Py + 180°)] + N* L [sin(Ps— Pn)] + N-T[sin(Ps— P + 180°)] + 2AN
— 2N

N*T[sin(®Ps— Dn)] — N-L [sin(Ps— Pr)] + N* L [sin(Ps— Dp)] — N-T[sin(Ps — Pr )] + 2AN

SN _
2AN Acceptances cancel if

2N opposing polarizations summed




Quantifying the Asymmetry

A = Nsin(d)s—d)h)T'I' Nsin(dJs—CDh) !

NT+ N ¢
How do we get the cross-sections from

particle counts in the detector?
We sum over both 1 and | polarizations™

and exploit symmetry | |
FOr O < CDS _ (Dh < |800: *weighted by relative

luminosities
Azimuthal symmetry requires that
N*T =N-{ + AN
N*{ =N-T + AN
Weighting and summing over opposite detector sides yields
A __ N*T[sin(®s— ®n)] + N-L[sin(Ps— Py + 180°)] + N* L [sin(Ps— Pn)] + N-T[sin(Ps— P + 180°)] + 2AN
— 2N

N*T[sin(®Ps— Dn)] — N-L [sin(Ps— Pr)] + N* L [sin(Ps— Dp)] — N-T[sin(Ps — Pr )] + 2AN

SN _
2AN Acceptances cancel if

2N opposing polarizations summed




Quantifying the Asymmetry
A = Nsin(CDs—CDh)T(Z,jT) T Nsin(dJs—CDh)l(Z,jT)

N'(z, jr) + N*(z, jr)
How do we get the cross-sections from

particle counts in the detector?
We sum over both 1 and | polarizations™

and exploit symmetry | |
FOr O < CDS _ th < |800: *weighted by relative

luminosities
Azimuthal symmetry requires that
N*T =N-{ + AN
N*{ =N-T + AN
Weighting and summing over opposite detector sides yields
A __ N*T[sin(®s— ®n)] + N-L[sin(Ps— Py + 180°)] + N* L [sin(Ps— Pn)] + N-T[sin(Ps— P + 180°)] + 2AN
— 2N

N*T[sin(®Ps— Dn)] — N-L [sin(Ps— Pr)] + N* L [sin(Ps— Dp)] — N-T[sin(Ps — Pr )] + 2AN

SN _
2AN Acceptances cancel if

2N opposing polarizations summed




Extraction of 5g]

F. Yuan, arXiv:0804.3047 [hep-ph] (200

d _ do  __ d | d
dyldygdpg s apS ps ‘Sﬂ% Sin(¢r — ¢s) ps



Extraction of 5g]
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d _— do __ d | o do
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Extraction of 5g]

F. Yuan, arXiv:0804.3047 [hep-ph] (200

d _— do __ d | o do
dyldygdp%ddejT = Jps. — 4P S | ‘SJ-|m_7r Sin(¢r — ¢s) ps
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Extraction of 5g]

F. Yuan, arXiv:0804.3047 [hep-ph] (200

dy1dysdp2dzd2j; — dP.S. ~ dP.S.

dr __ _ do  _ douy \S¢|@ Sin(¢r — ds) THE
/_ poIariTzation

phase space

PUET

JT = momentum of 1T transverse to jet



Extraction of 5g]

F. Yuan, arXiv:0804.3047 [hep-ph] (200

do — do __ dou ‘SJ_|@SIH(?W o ngS) doTy

dy1dysdp2dzd2j; — dP.S. ~ dP.S. dP.S.

7~ polarization

dOhase space jrangle  pol. angle

PUET

JT = momentum of 1T transverse to jet



Extraction of 5g]

F. Yuan, arXiv:0804.3047 [hep-ph] (200

unpolarlze olarized cross-sections
do _ do _[doyy] @ L dory |
\SL| sin gbﬂ D5V

dyldygdedzdij — dP.S. dP.S.
/Tangle pol. angle

~ polanzatlon

phase space

PUET

JT = momentum of 17 transverse to jet
Z;’USU — Za b,c fb( )xfa< )D?(zajT)Habﬁcd

B =20, fo(a)xoq(x) AN Dz, jr) Hylne



Extraction of 5g]

F. Yuan, arXiv:0804.3047 [hep-ph] (200

unpolarlze olarized cross-sections
do _ do _Jdoyy] @ §doru |
‘SL| Sin wa ¢S/dps

dyldygdeddeJT — dP.S. dP.S.
/Tangle pol. angle

~ polanzatlon

phase space

PUET

JT = momentum of 1T transverse to jet

doyu __ N N h

dP.S. Za,b,c L Vb(fb )iTV ID 2 .]T ab—>cd
dory __ N/ N Collins
dP.S. Zb,q L Ifb ITéq A D "’7 JT)qu—>qb

(Unpolarized) quark distributions atx=0.2




Extraction of 591

F. Yuan, arXiv:0804.3047 [hep-ph] (200

unpolarlze z olarized cross-sections

do .  do dUUU dUTU
dy1dyadptd=d2j; — dP.S. _ dP.s. ‘SL‘ Sin qbﬂ OsYips
jrangle pol. angle

~ polarlzatlon

phase space

PUET

JT = momentum of 17 transverse to jet

e = Dane V(@ lfu(a

ji‘DTSI.“,J _ qu T Ifb II(SQ AND ~,j )T{Colhns

qb—qb

WO (=, 1) Hap— e

(Unpolarized) quark distributions atx=0.2

Fragmentation functions (Collins, Sivers)



Extraction of 5&]

F. Yuan, arXiv:0804.3047 [hep-ph] (20

do — _do

unpolarized, z olarized cross-sections

dy1dysdpZdzd2j;r — dP.S.

7

phase space

Extraction of Collins
fragmentation function from
fit to SIDIS data (HERMES,

COMPASS) and Belle

Collab. data (KEK)

(Anselmino, et al., 2008)
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JT = momentum of 17 transverse to jet

)\D" (2, j7) Hap— e

Z;Tg - qu T Ifb II(SQ AND(N,] ) Collins

qb—qb

(Unpolarized) quark distributions atx=0.2

Fragmentation functions (Collins, Sivers)
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Extraction of 5&]

F. Yuan, arXiv:0804.3047 [hep-ph] (20

unpolarlze z olarized cross-sections

do — do _[doyul hLdoru ]
dy1dyadptd=d2j; — dP.S. _ dP.s. ‘Si| Sin gbﬂ OsYips
/Ta|’19|e pol. angle

7

phase space polarlzatlon

PUET
Extraction of Collins

fragmentation function from
fit to SIDIS data (HERMES,
COMPASS) and Belle
Collab. data (KEK)
(Anselmino, et al., 2008)
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(Unpolarized) quark distributions atx=0.2
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Extraction of 5OCJ

F. Yuan, arXiv:0804.3047 [hep-ph] (20

unpolarlze z olarized cross-sections

do — do _[doyul hLdoru ]
dy1dyadptd=d2j; — dP.S. _ dP.s. ‘Sl| Sin wa OsYips
/Tal’19|e pol. angle

~ polarlzatlon

phase space

PUET

Extraction of Collins
fragmentation function from
fit to SIDIS data (HERMES,

COMPASS) and Belle

Collab. data (KEK)

(Anselmino, et al., 2008)

r*: favored = u , unfavored = d
m— favored = d , unfavored = u dovu E | V ! Mf
dP.S. a,b, c

B = 24, )fo(x edq(x) AN Dz, jr) gy

JT = momentum of 17 transverse to jet
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(Unpolarized) quark distributions atx=0.2

Fragmentation functions (Collins, Sivers)
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F. Yuan, arXiv:0804.3047 [hep-ph] (20

unpolarlze z olarized cross-sections

do — do _[doyul hLdoru ]
dy1dyadptd=d2j; — dP.S. _ dP.s. ‘Si| Sin gbw OsYips
/Ta|’19|e pol. angle

~ polarlzatlon

phase space
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Extraction of Collins
fragmentation function from
fit to SIDIS data (HERMES,

COMPASS) and Belle

Collab. data (KEK)

(Anselmino, et al., 2008)

r*: favored = u , unfavored = d y ;
. — = o - N
7 favored = d, unfavored =y 2UL — Za oL V 7 Mf WO (2, 57 ) H s e

sre = ¥, , ool ufa(@)AY Dz, jrJHG

JT = momentum of 17 transverse to jet

(Unpolarized) quark distributions atx=0.2

Fragmentation functions (Collins, Sivers)
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Quality Assessment:

Leading ©* P, by Run
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Quality Assessment:

™ AR=An+ A6’ by Run
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Effect on z due to triggering on neutral particles

= trigger jet
o away-side jet
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