

Azimuthal anisotropy of high-p_t direct photons

High-p_T Physics at LHC
September 2013
Grenoble, France

contents

- Motivation
- Theoretical Predictions
- STAR Techniques
- Previous Results
- New Results
- Summary

Motivation-I

- Produced hadrons are correlated "not freely streaming".
- Many Th. ideas and Ex. Observables investigating the underlying physics of those correlations (Φ,η,pt).

$$dN/d\phi \propto 1 + \sum_{n} 2v_n \cos n \left(\phi - \Psi_{RP}\right)$$

- Azimuthal correlations w.r.t. to reaction plane provide the geometrical effects on the hadron trajectory.
- At high-pt, the azimuthal anisotropy could constrain the path length dependence of energy loss "jet quenching"

Motivation -II

- v₂ at high pt seems to be too large for a pure "jet quenching". Phys. Rev. C 66, 027902(200)
- particles of high-pt are expected to have no prefered direction w.r.t to the reaction plane, i.e. v₂=0

Theoretical Predictions

According to the production mechanisms of direct photons:

- v₂>o: particles prefer shorter path "out-of-plane"
- v_2 =0: no preferred direction w.r.t reaction plane
- v₂<0: particles prefer longer path "in-plane"

STAR techniques

- Select EM neutral clusters
- Φ Use the transverse shower shape to select γ^{dir} free (π^0 -rich) sample and γ^{rich} sample from the neutral clusters.

$$v_2^{\gamma_{rich}} N^{\gamma_{rich}} = v_2^{bg} N^{bg} + v_2^{\gamma_{dir}} N^{\gamma_{dir}}$$

$$\mathcal{R} = \frac{N^{bg}}{N^{\gamma_{rich}}} \simeq \frac{N^{\pi^0}}{N^{\gamma_{rich}}}$$

$$v_2^{\gamma_{direct}} = \frac{v_2^{\gamma_{rich}} - v_2^{bg} \mathcal{R}}{1 - \mathcal{R}}$$

$$v_2^{\gamma_{direct}} = \frac{v_2^{\gamma_{rich}} - v_2^{\pi^0} \mathcal{R}}{1 - \mathcal{R}}$$

Previous Results-STAR (Run 2007)

- v_2 of direct photons is ~ 1/3 of pions, frag. photons contribution?!
- Not all of the measured v_2 of neutral pions at high-pt are due to the L dependence of ΔE .

Previous Results-STAR vs. PHENIX

STAR and PHENIX have similar results using different techniques

Summary of the previous results

- v₂ (TPC) of direct photons at high-pt is not zero within the statistical errs (dominant source of uncertainties in Run 2007 data set)
 - Event-plane reconstruction biases "non-flow"?
 - > Fragmentation photons contributions?
- More forward detectors to determine the reaction plane orientation.
 - > STAR Time Projection Chambers: 1.0 < $|\eta|$ for TPC and

$$2.5 < |\eta| < 4.0$$
 for FTPC

EM Neutral clusters v₂

- Neutral cluster v_2 shows no strong dependence on cluster energy.
- v_2 (TPC) > v_2 (FTPC), may indicate the event-plan reconstruction biases contributions for the TPC-based measurements.
- Is it fully eliminated at the FTPC?

v_2 (TPC) of neutral cluster, π^0 , γ^{rich}

v₂ of neutral pions is ~ 10% - 15%, agrees with the STAR previous measurements (Run 2007) and PHENIX measurements.

v_2 (FTPC) of neutral cluster, π^0 , γ^{rich}

• v_2 of neutral pions is ~ 10% and slightly smaller than measured values by TPC.

v_2 (TPC) π^0 , direct photons

Sys. errors are estimated to be 20-30% for direct photons and neutral pions

- v₂ of neutral pions and direct photons with the STAR previous measurements and PHENIX measurements.
- v₂ of direct photons is not zero (3-5%)

v_2 (FTPC) π^0 , direct photons

Sys. errors are estimated to be 20-30% for direct photons and neutral pions

- v₂ of neutral pions is ~ 10%, agrees PHENIX measurements.
- v₂ of direct photons is o%

Summary

- The pseudorapidity gap reduces the bias in the reaction plane determination and accordingly to the measured azimuthal anisotropy w.r.t reaction plane.
- First statistically significant measurements of direct photons v_2 up to 20 GeV in the field of heavy ion collisions.
- The STAR results of direct photons v_2 using the FTPC indicate the negligible remaining bias in event-plane reconstruction.
- Negligible contribution of the fragmentation photons for the direct photons.
- The v_2 of neutral pions using the FTPC is apparently due to the path length dependence of energy loss.