Azimuthal anisotropy of high-p_t direct photons High-p_T Physics at LHC September 2013 Grenoble, France #### contents - Motivation - Theoretical Predictions - STAR Techniques - Previous Results - New Results - Summary #### Motivation-I - Produced hadrons are correlated "not freely streaming". - Many Th. ideas and Ex. Observables investigating the underlying physics of those correlations (Φ,η,pt). $$dN/d\phi \propto 1 + \sum_{n} 2v_n \cos n \left(\phi - \Psi_{RP}\right)$$ - Azimuthal correlations w.r.t. to reaction plane provide the geometrical effects on the hadron trajectory. - At high-pt, the azimuthal anisotropy could constrain the path length dependence of energy loss "jet quenching" ### Motivation -II - v₂ at high pt seems to be too large for a pure "jet quenching". Phys. Rev. C 66, 027902(200) - particles of high-pt are expected to have no prefered direction w.r.t to the reaction plane, i.e. v₂=0 ### Theoretical Predictions According to the production mechanisms of direct photons: - v₂>o: particles prefer shorter path "out-of-plane" - v_2 =0: no preferred direction w.r.t reaction plane - v₂<0: particles prefer longer path "in-plane" # STAR techniques - Select EM neutral clusters - Φ Use the transverse shower shape to select γ^{dir} free (π^0 -rich) sample and γ^{rich} sample from the neutral clusters. $$v_2^{\gamma_{rich}} N^{\gamma_{rich}} = v_2^{bg} N^{bg} + v_2^{\gamma_{dir}} N^{\gamma_{dir}}$$ $$\mathcal{R} = \frac{N^{bg}}{N^{\gamma_{rich}}} \simeq \frac{N^{\pi^0}}{N^{\gamma_{rich}}}$$ $$v_2^{\gamma_{direct}} = \frac{v_2^{\gamma_{rich}} - v_2^{bg} \mathcal{R}}{1 - \mathcal{R}}$$ $$v_2^{\gamma_{direct}} = \frac{v_2^{\gamma_{rich}} - v_2^{\pi^0} \mathcal{R}}{1 - \mathcal{R}}$$ ### Previous Results-STAR (Run 2007) - v_2 of direct photons is ~ 1/3 of pions, frag. photons contribution?! - Not all of the measured v_2 of neutral pions at high-pt are due to the L dependence of ΔE . #### Previous Results-STAR vs. PHENIX STAR and PHENIX have similar results using different techniques ### Summary of the previous results - v₂ (TPC) of direct photons at high-pt is not zero within the statistical errs (dominant source of uncertainties in Run 2007 data set) - Event-plane reconstruction biases "non-flow"? - > Fragmentation photons contributions? - More forward detectors to determine the reaction plane orientation. - > STAR Time Projection Chambers: 1.0 < $|\eta|$ for TPC and $$2.5 < |\eta| < 4.0$$ for FTPC # EM Neutral clusters v₂ - Neutral cluster v_2 shows no strong dependence on cluster energy. - v_2 (TPC) > v_2 (FTPC), may indicate the event-plan reconstruction biases contributions for the TPC-based measurements. - Is it fully eliminated at the FTPC? ### v_2 (TPC) of neutral cluster, π^0 , γ^{rich} v₂ of neutral pions is ~ 10% - 15%, agrees with the STAR previous measurements (Run 2007) and PHENIX measurements. ### v_2 (FTPC) of neutral cluster, π^0 , γ^{rich} • v_2 of neutral pions is ~ 10% and slightly smaller than measured values by TPC. # v_2 (TPC) π^0 , direct photons Sys. errors are estimated to be 20-30% for direct photons and neutral pions - v₂ of neutral pions and direct photons with the STAR previous measurements and PHENIX measurements. - v₂ of direct photons is not zero (3-5%) # v_2 (FTPC) π^0 , direct photons Sys. errors are estimated to be 20-30% for direct photons and neutral pions - v₂ of neutral pions is ~ 10%, agrees PHENIX measurements. - v₂ of direct photons is o% # Summary - The pseudorapidity gap reduces the bias in the reaction plane determination and accordingly to the measured azimuthal anisotropy w.r.t reaction plane. - First statistically significant measurements of direct photons v_2 up to 20 GeV in the field of heavy ion collisions. - The STAR results of direct photons v_2 using the FTPC indicate the negligible remaining bias in event-plane reconstruction. - Negligible contribution of the fragmentation photons for the direct photons. - The v_2 of neutral pions using the FTPC is apparently due to the path length dependence of energy loss.