

Higher-Order Cumulants of Net-Proton Multiplicity Distributions in √s_{NN} = 200 GeV Zr+Zr and Ru+Ru Collisions by the STAR Experiment

Lawrence Berkeley National Laboratory Ho-San Ko for the STAR Collaboration

Supported by

Ho-San Ko | LBNL | ATHIC2021

Outline

- Introduction & motivation
- Analysis information
 - \circ $\sqrt{s_{NN}}$ = 200 GeV isobaric collisions (mixed Ru and Zr data)
- Corrections
- Net-proton cumulants & cumulant ratios
- Summary

QCD phase diagram

[1] Nature 443, 675 (2006)
[2] JHEP 06, 088 (2009)
[3] Phys. Rev. D 85, 054503 (2012)
[4] Science 332, 1525 (2011)

Fluctuation of conserved quantities

• Cumulants of conserved quantities (B, Q, S) are related to correlation length of the system

$$\delta N = N - \langle N \rangle \ C_1 = \langle N \rangle, C_2 = \left\langle (\delta N)^2 \right\rangle$$

$$C_3 = \left\langle (\delta N)^3 \right\rangle, C_4 = \left\langle (\delta N)^4 \right\rangle - 3 \left\langle (\delta N)^2 \right\rangle^2$$

$$C_2 = \sigma^2, \ S = C_3 / (C_2)^{3/2}, \kappa = C_4 / (C_2)^2$$
The higher the order, the more sensitive
$$C_2 \sim \xi^2, C_3 \sim \xi^{4.5}, C_4 \sim \xi^7$$

$$S^{kewness(S)}$$

$$S > 0$$

$$S > 0$$

$$S < 0$$

Phys. Rev. Lett. 107, 052301 (2011)

• The cumulant ratios can be directly compared to theoretical calculations

$$\chi_q^{(n)} = \frac{\partial^n (p/T^4)}{\partial (\mu_Q/T)^2} = \frac{1}{VT^3} \times C_q^n$$

Net-proton number is used as a proxy to net-B number

Fourth-order fluctuations for critical point search

<<Phys. Rev. Lett. 126, 92301 (2021)>>

• 4th order: predicts a non-monotonic energy dependence due to contribution from QCD critical point

Isobaric (Zr+Zr & Ru+Ru) collision data

<<Phys. Rev. C 104, 024902 (2021)>>

- The number of nucleons per nucleus:
 - Proton: A = 1
 - Isobar (Ru or Zr): A = 96
 - Au: A = 197
- Expect the same multiplicity dependence in different collision systems at the same collision energy
- Large statistics: 2.3B Zr+Zr and 2.2B Ru+Ru taken at STAR in 2018

Solenoid Tracker at RHIC (STAR)

> Excellent Particle Identification

- Time Projection Chamber (TPC): Vertexing & particle identification
- Time Of Flight (TOF) detector: Ensures proton purity at 0.8 < p_T < 2.0 GeV/c

Proton identification

Ho-San Ko | LBNL | ATHIC2021

-3

-2

-1

0

charge X momentum [GeV/c]

3

8

Net-proton distributions

Ho-San Ko | LBNL | ATHIC2021

Corrections

- Detector efficiency correction [1~3]
 - Binomial detector efficiency correction
 - Efficiency corrected to each particle track
 - TOF matching + TPC tracking efficiency corrections
- Statistical uncertainty calculated based on Delta theorem [4]
- Centrality bin width correction [5]
 - Corrects finite bin width effect

Phys. Rev. C 91, 034907 (2015)
 Phys. Rev. C 95, 064912 (2017)
 Phys. Rev. C 99, 044917 (2019)
 J. Phys. G: Nucl. Part. Phys. 39 025008 (2012)
 J. Phys. G: Nucl. Part. Phys. 40 105104 (2013)

Centrality: a measure of geometric overlap of two colliding nuclei \rightarrow determined by charged-particle multiplicity

Ho-San Ko | LBNL | ATHIC2021

TOF matching efficiency & TPC tracking efficiency maps

- TOF matching efficiency: Number of protons identified by TPC vs TPC+TOF
- TPC tracking efficiency: Number of protons identified by TPC vs generated both in MC simulation with realistic geometry (embedding)
- Do interpolation between bins to overcome the low statistics of the MC simulation events

Nov-8-2021

Net-proton cumulants and ratios

UrQMD centrality determined in a similar way to the data: measure charged-pion & charged-kaon multiplicity

0°

•

<N_{nart}>: Average Number of participating nucleons per event

200 350 UrQMD: hadronic transport model calculation with the same acceptance of the STAR

STAR Preliminary

- UrOMD results show discrepancies. However, in general, show a similar trend as the data
- Au+Au collision at $\sqrt{s_{NN}}$ = 200 GeV plotted
 - Systematic shift in cumulant ratios
 - Overall trends are consistent

C₄/C₂ (4th-order) net-proton cumulant ratio comparison

p+p: <<CPOD2021 R. Nishitani>> Au+Au: <<Phys. Rev. C 104, 024902 (2021)>> LQCD: <<Phys. Rev. D 101, 074502 (2020) >>

- For p+p collision, the entire centrality classes are merged to one and shown with light blue
 - a. p+p collision's multiplicity dependence is the opposite from the heavy-ion collision's
- 2. Isobaric collisions (Ru+Ru, Zr+Zr combined) fit into the p+p (averaged) and Au+Au collision results at $\sqrt{s_{NN}} = 200 \text{ GeV}$
- 3. C_4/C_2 lowers as the charged particle multiplicity \rightarrow consistent with the lattice QCD result at high multiplicity region: approaching thermalized medium in the most central collisions

Summary and outlook

- 1. Net-proton cumulants and their ratios from $\sqrt{s_{NN}} = 200$ GeV isobaric collisions (mixed Ru and Zr data)
- 2. Net-proton cumulants and their ratios of the isobaric collision compared with the Au+Au collision results at $\sqrt{s_{NN}} = 200 \text{ GeV}$
 - a. Systematic shift in cumulant ratios. However, overall trends are consistent
 - b. p+p collisions show the opposite multiplicity dependency from the heavy-ion collisions
 - c. C_4/C_2 from the different collision systems fit one another in collision centrality dependence
- 3. Net-proton cumulant ratios compared with HRG, UrQMD models, and lattice QCD
 - a. UrQMD results qualitatively show the same trends as the data
 - b. C4/C2 consistent with the lattice QCD calculation result at high multiplicity
 - i. approaching thermalized medium in the most central collisions
- 4. Working on higher order cumulants