

Hadron Production in Au+Au Collisions from STAR Fixed-Target Experiment

Hongcan Li^{1,2} (lihc@mails.ccnu.edu.cn)

for the STAR Collaboration ¹Central China Normal University ²University of Chinese Academy of Sciences

Quark Matter 2025, Frankfurt, Germany

Supported in part by

STAR Collaboration

Outline

- Motivation
- Experimental Setup
- Measurement of Strange Hadron Production
 - ≻Yield and yield ratio
 - **≻**Baryon to meson ratio
 - ≻Kinetic freeze-out
- Summary and Outlook

Exploring the QCD Phase Diagram

- Study the nature of QGP and QCD phase boundary using high energy heavy-ion collisions
 - > At small μ_B , LQCD predicts smooth crossover phase transition
 - At large μ_B, QCD effective models predict 1st order phase transition

>QCD critical point ?

Experimental exploration of QCD phase diagram in high μ_B region

Strange Hadron Production at Near/sub-threshold Energies

- Strange hadron production at high baryon density is a good probe to study medium properties
- The STAR BES-II FXT experiment provides unique opportunity to study strange hadron production at near or sub-threshold energies

STAR Detector and Fixed Target Setup

• Detector upgrades

> Time Projection Chamber (TPC & inner TPC: $-2.4 < \eta < 0$)

➤ Time-of-Flight

Barrel TOF: -1.45 < η < 0 & end-cap TOF: -2.15 < η < -1.55

- Fixed target mode (Au + Au collisions at √s_{NN} = 3.0 13.7 GeV)
 > 10× statistics compared to BES-I
 - \succ This talk: $\sqrt{s_{\rm NN}} = 3.2 6.2 \text{ GeV}$

Hongcan Li

X (cm)

Particle Identification

- TPC (dE/dx) and TOF (β) for charged pion, kaon and proton identification > TOF $m^2 = p^2 \left(\frac{1}{\beta^2} - 1\right)$
- Invariant mass method is used to reconstruct decay strange hadrons (K_S^0 , ϕ , Λ and Ξ^-) from their decay daughters

$$\gg m_{inv.} = \sqrt{\left(E_{dau,1} + E_{dau,2}\right)^2 - \left(\vec{p}_{dau,1} + \vec{p}_{dau,2}\right)^2}$$

Signal Extraction

• Combinatorial background is reconstructed by mixed-event or track rotation method

• Good coverage from beam-rapidity to mid-rapidity for K_s^0 , Λ , Ξ^- and ϕ

STAR

$p_{\rm T}$ Spectra and Rapidity Density Distributions

• Comprehensive measurements for strange hadron production at STAR FXT energies

Energy Dependence of Mid-Rapidity Yields

STAR Collaboration. Phys. Rev. C 96 (2017) 044904, 2017; Phys. Rev. C 102, 034909 (2020); Phys. Lett. B 831, 137152 (2022); JHEP 2024, 139 (2024)

HADES Collaboration. Phys. Lett. B 793, 457 (2019)

- Mid-rapidity yields increases rapidly at low energy and approximately saturate at high energy
 - ➢ Partonic interaction (pair production)
 gg → ss or qq → ss
 - ➢ Hadronic interaction (associated production)
 BB → BYK or BB → BΞKK
 B: N, p, Δ, etc. Y: Λ, Σ, etc. K: K⁺, K⁰
- First measurement of Ξ^- at sub-threshold energies in Au+Au collisions
- A yields exceed those of K_S^0 below $\sqrt{s_{NN}} \sim 8$ GeV

> Due to higher baryon density at low collision energies

Mathias Labonte, Poster ID 809 Ziyue Xiang, Poster ID 832

Centrality Dependence of Mid-Rapidity Yields

- Centrality dependence can be described by power law scaling: Yield = $c \times \langle N_{part} \rangle^{\alpha}$
- Strange hadron yields increase faster than $\langle N_{part} \rangle$ from peripheral to central collisions

Energy dependence of Scaling Parameter α

- Centrality dependence of near-threshold production may be sensitive to EoS
- Scaling parameter α decreases with energy
 ≻Λ(K⁰_S) and φ have similar α
 - $> \Xi^-$ has significantly larger α compared to Λ, K⁰_S and φ below $\sqrt{s_{NN}} \sim 7$ GeV
 - □ Likely due to Ξ[−] mainly produced via multistep hadronic interactions

e.g.: NN \rightarrow NN^{*} & N^{*}N \rightarrow NEKK

 $NN \rightarrow N\Lambda K \& \Lambda\Lambda \rightarrow N\Xi$

- Transport model simulations UrQMD
 - > Qualitatively reproduces the energy dependence
 - \succ Overestimates α for ϕ meson

UrQMD: S.A. Bass, et.al. Prog. Part. Nucl. Phys. 41 (1998)

QM-2025, April 6-12

Energy Dependence of Yield Ratios

QM-2025, April 6-12

Baryon to Meson Ratios

QM-2025, April 6-12

Kinetic Freeze-out

• Blast-wave model

$$\frac{d^2 N}{2\pi p_T dp_T dy} \propto \int_0^R r dr \, m_T I_0 \left(\frac{p_T sinh\rho(r)}{T_{Kin}}\right) K_1 \left(\frac{m_T cosh\rho(r)}{T_{Kin}}\right)$$
$$\rho(r) = \frac{1}{2} ln \frac{1 + \beta_T(r)}{1 - \beta_T(r)}, \qquad \beta_T(r) = \beta_{T,Max} \left(\frac{r}{R}\right)^n$$

- > Kinetic freeze-out temperature: T_{Kin} > Collective velocity: $\langle \beta_T \rangle = \frac{2}{n+2} \beta_{T,Max}$
- Apply Blast-wave fits to proton and Λ spectra separately
- $\langle \beta_T \rangle$ decreases while T_{Kin} slightly increases from central to peripheral collisions at $\sqrt{s_{NN}} = 3$ GeV
 - Smaller fireball and weaker pressure in peripheral collisions

Kinetic Freeze-out

- Clear energy dependence
 - $> T_{Kin}$ increases while $\langle \beta_T \rangle$ remains almost constant from $\sqrt{s_{NN}} = 3 - 6.2$ GeV for Λ
- Different freeze-out parameters between proton and Λ from $\sqrt{s_{\text{NN}}} = 3 - 3.9 \text{ GeV}$
 - > May be due to different production mechanisms

Kinetic Freeze-out

- Clear energy dependence
 - $> T_{Kin}$ increases while $\langle \beta_T \rangle$ remains almost constant from $\sqrt{s_{NN}} = 3 - 6.2$ GeV for Λ
- Different freeze-out parameters between proton and Λ from √s_{NN} = 3 – 3.9 GeV
 ≻ May be due to different production mechanisms
- Hadronic transport model UrQMD qualitatively reproduces the trend at STAR FXT energies

Liubing Chen, Poster ID 711

UrQMD: S.A. Bass, et.al. Prog. Part. Nucl. Phys. 41 (1998)

Summary and Outlook

• Summary

> Strange hadron measurements (K⁺, K⁻, K⁰_s, ϕ , Λ and Ξ^-) in Au+Au collisions from $\sqrt{s_{NN}} = 3.2 - 6.2$ GeV

- □ CE is mandatory to describe strange hadron yields below $\sqrt{s_{NN}} \sim 5 \text{ GeV} \rightarrow \text{implying local strangeness}$ conservation is important in high baryon density region
- □ Significantly larger α for Ξ⁻ compared to Λ, K_S^0 and φ below $\sqrt{s_{NN}} \sim 7$ GeV → likely due to production from multi-step hadronic interaction
- $\Box \Lambda/K_S^0$ is enhanced above at $p_T > 1$ GeV/c in central collisions above $\sqrt{s_{NN}} = 3.9$ GeV
- □ Different freeze-out parameters for proton and Λ from $\sqrt{s_{NN}} = 3 3.9$ GeV → likely due to different production mechanisms
- Outlook

> Measurements of $\overline{\Lambda}$, $\overline{\Xi}^+$, Ω^- and $\overline{\Omega}^+$ production at near/sub-threshold energy from BES-II

Thanks for your attention!

Back up

QM-2025, April 6-12

NN Collision Threshold Energies

NN Collision Threshold Energy			
$NN \rightarrow N\Lambda K \sim 2.548 \text{ GeV}$	$NN \rightarrow NNK\overline{K} \sim 2.864 \text{ GeV}$	BES-II FXT (3 - 13.7 GeV)	
$NN \rightarrow NN\phi \sim 2.896 \text{ GeV}$	$NN \rightarrow NEKK \sim 3.247 \text{ GeV}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$NN \rightarrow NNN\overline{N} \sim 3.753 \text{ GeV}$	$NN \rightarrow N\Omega KKK \sim 4.096 \text{ GeV}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	⁻ [C
$NN \rightarrow NN\Lambda\overline{\Lambda} \sim 4.107 \text{ GeV}$	$NN \rightarrow NN\Xi\overline{\Xi} \sim 4.520 \text{ GeV}$	$\phi \frac{1}{\mathbf{p}} \frac{1}{\Lambda}$	in loc
$NN\toNN\Omega\overline\Omega\sim 5.221GeV$			

Baryon to Meson Ratio

